Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.11.593

Facile Synthesis of g-C3N4 Modified Bi2MoO6 Nanocomposite with Improved Photoelectronic Behaviors  

Zhu, Lei (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology)
Tang, Jia-Yao (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology)
Fan, Jia-Yi (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology)
Sun, Chen (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology)
Meng, Ze-Da (Suzhou University of Science and Technology, School of Chemistry and Life Sciences)
Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
Publication Information
Korean Journal of Materials Research / v.31, no.11, 2021 , pp. 593-600 More about this Journal
Abstract
Herein, a series of g-C3N4 modified Bi2MoO6 nanocomposites using Bi2MoO6 and melamine as original materials are fabricated via sintering process. For presynthesis of Bi2MoO6 an ultrasonic-assisted hydrothermal technique is researched. The structure and composition of the nanocomposites are characterized by Raman spectroscopy, X-ray diffraction (XRD), and high-resolution field emission scanning electron microscopy (SEM). The improved photoelectrochemical properties are studied by photocurrent density, EIS, and amperometric i-t curve analysis. It is found that the structure of Bi2MoO6 nanoparticles remains intact, with good dispersion status. The as-prepared g-C3N4/Bi2MoO6 nanocomposites (BMC 5-9) are selected and investigated by SEM analysis, which inhibits special morphology consisting of Bi2MoO6 nanoparticles and some g-C3N4 nanosheets. The introduction of small sized g-C3N4 nanosheets in sample BMC 9 is effective to improve the charge separation and transfer efficiency, resulting in enhancing of the photoelectric behavior of Bi2MoO6. The improved photoelectronic behavior of g-C3N4/Bi2MoO6 may be attributed to enhanced charge separation efficiency, photocurrent stability, and fast electron transport pathways for some energy applications.
Keywords
$Bi_2MoO_6$; $g-C_3N_4$; charge separation; photoelectrochemical property;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Burda, X. B. Chen, R. Narayanan and M. A. El-Sayed, Chem. Rev., 105, 1025 (2005).   DOI
2 F. Z. Cong, W. Hong, X. R. Tian and H. X. Xu, Front. Phys., 7, 521 (2012).   DOI
3 F. E. Osterloh, Chem. Soc. Rev., 42, 2294 (2013).   DOI
4 S. Zhao, Z. Dai, W. Guo, F. Chen, Y. Liu and R. Chen, Appl. Catal., B, 244, 206 (2019).   DOI
5 G. H. Tian, Y. J. Chen, R. T. Zhai, J. Zhou, W. Zhou, R. H. Wang, K. Pan, C. G. Tian and H. G. Fu, J. Mater. Chem. A, 1, 6961 (2013).   DOI
6 F. Zhou, R. Shi and Y. F. Zhu, J. Mol. Catal. A: Chem., 340, 77 (2011).   DOI
7 M. Y. Zhang, C. L. Shao, J. B. Mu, X. M. Huang, Z. Y. Zhang, Z. C. Guo, P. Zhang and Y. C. Liu, J. Mater. Chem., 22, 577 (2012).   DOI
8 K. R. Lai, W. Wei, Y. T. Zhu, M. Guo, Y. Dai and B. B. Huang, J. Solid State Chem., 187, 103 (2012).   DOI
9 Y. Wang, X. Wang and M. Antonietti, Angew. Chem. Int. Ed., 51, 68 (2012).   DOI
10 G. Dong, Y. Zhang, Q. Pan and J. Qiu, J. Photochem. Photobio., C, 20, 33 (2014).   DOI
11 X. H. Li and M. Antonietti, Chem. Soc. Rev., 42, 6593 (2013).   DOI
12 T. Yan, Q. Yan, X. D. Wang, H. Y. Liu, M. M. Li, S. X. Lu, W. G. Xu and M. Sun, Dalton Trans., 44, 1601 (2015).   DOI
13 Y. Li, J. Wang, X. Tian, L. Ma, C. Dai, C. Yang and Z. Zhou, Nanoscale, 8, 1676 (2016).   DOI
14 M. MacZka, P. T. C. Freire, C. Luz-Lima, W. Paraguassu, J. Hanuza and J. M. Filho, J. Phys.: Condens. Matter, 22, 015901 (2010).   DOI
15 G. Zhang, J. Zhang, M. Zhang and X. Wang, J. Mater. Chem., 22, 8083 (2012).   DOI
16 K. Besteman, J. O. Lee, F. Wiertz, H. A. Heering and C. Dekker, Nano Lett., 3, 727 (2003).   DOI
17 P. F. Wang, Y. H. Ao, C. Wang, J. Hou, J. Qian, Carbon, 50, 5256 (2012).   DOI
18 H. Li, J. Liu, W. Hou, N. Du, R. Zhang and X. Tao, Appl. Catal., B, 160, 89 (2014).   DOI
19 F. Wang, D. Banerjee, Y. S. Liu, X. Y. Chen and X. G. Liu, Analyst, 135, 1839 (2010).   DOI
20 B. B. Zhang, L. Wang, Y. J. Zhang, Y. Ding and Y. P. Bi, Angew. Chem. Int. Ed., 57, 2248 (2018).   DOI
21 T. Yao, X. An, H. Han, J. Q. Chen and C. Li, Adv. Energy Mater., 8, 1800210 (2018).   DOI
22 J. Tian, P. Hao, N. Wei, H. Z. Cui and H. Liu, ACS Catal., 5, 4530 (2015).   DOI
23 D. K. Zhong, S. Choi, D. R. Gamelin, J. Am. Chem. Soc., 133, 18370 (2011).   DOI
24 J. E. Rettie, H. C. Lee, L. G. Marshall, J. F. Lin, C. Capan, J. Lindemuth, J. S. McCloy, J. Zhou, A. J. Bard and C. B. Mullins, J. Am. Chem. Soc., 135, 11389 (2013).   DOI
25 Y. Z. Zhen, C. M. Yang, F. Fu, H. D. Shen, W. W. Xue, C. R. Gu, J. H. Feng, Y. C. Zhang and Y. C. Liang, Phys. Chem. Chem. Phys., 22, 26278 (2020).   DOI
26 Y. Ma, Z. H. Wang, Y. L. Jia, L. N. Wang, M. Yang, Y. X. Qi and Y. P. Bi, Carbon, 114, 591 (2017).   DOI
27 H. E. Ali and Y. Khairy, Optik, 178, 90 (2019).   DOI
28 M. Fu, J. M. Pi, F. Dong, Q. Y. Duan and H. Guo, Int. J. Photoenergy, 2013, 158496 (2013).
29 X. Y. Zhang, M. Y. Li, L. M. He, D. D. Tian, L. J. Zhang, J. H. Zhang and M. Liu, J. Alloys Compd., 864, 157905 (2021).   DOI
30 J. Zhao, J. H. Yan, H. J. Jia, S. W. Zhong, X. Y. Zhang and L. Xu, J. Mol. Catal. A: Chem., 424, 162 (2016).   DOI
31 L. Zhang, T. Xu, X. Zhao and Y. Zhu, Appl. Catal., B, 98, 138 (2010).   DOI
32 H. Li, C. Liu, K. Li and H. Wang, J. Mater. Sci., 43, 7026 (2008).   DOI
33 K. Fu, Y. H. Pan, C. Ding, J. Shi and H. P. Deng J. Photochem. Photobiol., A, 412, 113235 (2021).   DOI