Browse > Article
http://dx.doi.org/10.33961/jecst.2019.03475

PEDOT:PSS Enhanced Electrochemical Capacitive Performance of Graphene-Templated δ-MnO2  

Sinan, Neriman (Graduate School of Natural and Applied Sciences, Advanced Technologies-Materials Science and Engineering Program, Bursa Technical University)
Unur, Ece (Department of Energy Systems Engineering, Bursa Technical University)
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.1, 2020 , pp. 50-59 More about this Journal
Abstract
Birnessite-type manganese dioxide (δ-MnO2) with hierarchical micro-/mesoporosity was synthesized via sacrificial graphene template approach under mild hydrothermal conditions for the first time. Graphene template was obtained by a surfactant (cetyltrimethylammonium bromide, CTAB) assisted liquid phase exfoliation (LPE) in water. A thin PEDOT:PSS (poly (3,4-ethylene dioxythiophene): poly (styrene sulfonate)) layer was applied to improve electrical conductivity and rate capability of MnO2. The MnO2 (535 F g-1 at 1 A g-1 and 45 F g-1 at 10 A g-1) and MnO2/PEDOT:PSS nanocomposite (550 F g-1 at 1 A g-1 and 141 F g-1 at 10 A g-1) delivered electrochemical performances superior to their previously reported counterparts. An asymmetric supercapacitor, composed of MnO2/PEDOT:PSS (positive) and Fe3O4/Carbon (negative) electrodes, provided a maximum specific energy of 18 Wh kg-1 and a maximum specific power of 4.5 kW kg-1 (ΔV= 2 V, 1M Na2SO4) with 85% capacitance retention after 1000 cycles. The graphene-templated MnO2/PEDOT:PSS nanocomposite obtained by a simple and green approach promises for future energy storage applications with its remarkable capacitance, rate performance and cycling stability
Keywords
Graphene; Liquid Exfoliation; $MnO_2$; PEDOT:PSS; Supercapacitor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Yan, P. Yan, S. Cheng, J. Chen, R. Zhuo, J. Feng, and G. Zhang, Cryst. Growth Des., 2009, 9(1), 218-222.   DOI
2 H. Chen, C.-K. Hsieh, Y. Yang, X.Y. Liu, C.-H. Lin, C.-H. Tsai, Z.Q. Wen, F. Dong, and Y.X. Zhang, ChemElectroChem, 2017, 4(9), 2414-2422.   DOI
3 X. Zhang, D. Chang, J. Liu, and Y. Luo, J. Mater. Chem., 2010, 20(24), 5080-5085.   DOI
4 C. Julien, M. Massot, R. Baddour-Hadjean, S. Franger, S. Bach, and J.P. Pereira-Ramos, Solid State Ionics, 2003, 159(3-4), 345-356.   DOI
5 K.S.W. Sing, Pure Appl. Chem., 1985, 57(4), 603-619.   DOI
6 D. Hou, H. Tao, X. Zhu, and M. Li, Appl. Surf. Sci., 2017, 419, 580-585.   DOI
7 J. Kawahara, P.A. Ersman, I. Engquist, and M. Berggren, Org. Electron., 2012, 13(3), 469-474.   DOI
8 B. Mendoza-Sanchez, J. Coelho, A. Pokle, and V. Nicolosi, Electrochim. Acta, 2015, 174, 696-705.   DOI
9 S. Shivakumara and N. Munichandraiah, Solid State Commun., 2017, 260, 34-39.   DOI
10 T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, and D. Belanger, Appl. Phys. A, 2006, 82(4), 599-606.   DOI
11 P. Tang, L. Han, and L. Zhang, ACS Appl. Mater. Interfaces, 2014, 6(13), 10506-10515.   DOI
12 L. Li, Z.A. Hu, N. An, Y.Y. Yang, Z.M. Li, and H.Y. Wu, J. Phys. Chem. C, 2014, 118(40), 22865-22872.   DOI
13 Y.L. Zhong, Z. Tian, G.P. Simon, and D. Li, Mater. Today, 2015, 18(2), 73-78.   DOI
14 J. Duay, E. Gillette, R. Liu, and S.B. Lee, Phys. Chem. Chem. Phys., 2012, 14(10), 3329-3337.   DOI
15 W. Chen, X. Tao, Y. Li, H. Wang, D. Wei, and C. Ban, J. Mater. Sci. Mater. Electron., 2016, 27(7), 6816-6822.   DOI
16 H. Zhou, Z. Yan, X. Yang, J. Lv, L. Kang, and Z.H. Liu, Mater. Chem. Phys., 2016, 177, 40-47.   DOI
17 Z. Li, J. Wang, Z. Wang, H. Ran, Y. Li, X. Han, and S. Yang, New J. Chem., 2012, 36(7), 1490-1495.   DOI
18 R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, Nat. Mater., 2015, 14(3), 271-279.   DOI
19 S. Chen, J. Zhu, and X. Wang, ACS Nano, 2010, 4(10), 6212-6218.   DOI
20 N. Sinan and E. Unur, Mater. Chem. Phys., 2016, 183, 571-579.   DOI
21 M. Cai, D. Thorpe, D.H. Adamson, and H.C. Schniepp, J. Mater. Chem., 2012, 22(48), 24992-25002.   DOI
22 D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, Solid State Commun., 2007, 143(1-2), 44-46.   DOI
23 A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P.C. Eklund, Nano Lett., 2006, 6(12), 2667-2673.   DOI
24 K.B. Ricardo, A. Sendecki, and H. Liu, Chem. Commun., 2014, 50(21), 2751-2754.   DOI
25 G. Zhao, J. Li, L. Jiang, H. Dong, X. Wang, and W. Hu, Chem. Sci., 2012, 3(2), 433-437.   DOI
26 M. Cao, N. Wang, L. Wang, Y. Zhang, Y. Chen, Z. Xie, Z. Li, E. Pambou, R. Li, C. Chen, F. Pan, H. Xu, J. Penny, J.R.P. Webster, and J.R. Lu, J. Mater. Chem. B, 2016, 4(1), 152-161.   DOI
27 H. Su, P. Zhu, L. Zhang, F. Zhou, G. Li, T. Li, Q. Wang, R. Sun, and C. Wong, J. Electroanal. Chem., 2017, 786, 28-34.   DOI
28 M. Lotya, P.J. King, U. Khan, S. De, and J.N. Coleman, ACS Nano, 2010, 4(6), 3155-3162.   DOI
29 X. Jin, W. Zhou, S. Zhang, and G.Z. Chen, Small, 2007, 3(9), 1513-1517.   DOI
30 J. Shang, B. Xie, Y. Li, X. Wei, N. Du, H. Li, W. Hou, and R. Zhang, ACS Nano, 2016, 10(6), 5916-5921.   DOI
31 P. Simon and Y. Gogotsi, Nat. Mater., 2008, 7(11), 845-854.   DOI
32 P. Simon, T. Brousse, and F. Favier, Supercapacitors Based on Carbon or Pseudocapacitive Materials, Vol. 3, Wiley-ISTE, 2017.
33 A. Vlad and A. Balducci, Nat. Mater., 2017, 16(2), 161- 162.   DOI
34 J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, and Z.X. Shen, Adv. Sci., 2018, 5(1), 1700322.   DOI
35 H.Y. Lee and J.B. Goodenough, J. Solid State Chem., 1999, 144(1), 220-223.   DOI
36 M. Toupin, T. Brousse, and D. Belanger, Chem. Mater., 2004, 16(16), 3184-3190.   DOI
37 S. Devaraj and N. Munichandraiah, J. Phys. Chem. C, 2008, 112(11), 4406-4417.   DOI
38 Y. Liu, D. Yan, R. Zhuo, S. Li, Z. Wu, J. Wang, P. Ren, P. Yan, and Z. Geng, J. Power Sources, 2013, 242, 78-85.   DOI
39 D. Yan, Y. Li, Y. Liu, R. Zhuo, B. Geng, Z. Wu, J. Wang, P. Ren, and P. Yan, Electrochim. Acta, 2015, 169, 317-325.   DOI