• Title/Summary/Keyword: hydrogen separation

Search Result 371, Processing Time 0.019 seconds

Hydrogen Separation and Production using Proton-Conducting Ceramic Membrane Catalytic Reactors (프로톤 전도성 세라믹 멤브레인 촉매 반응기를 이용한 수소 분리 및 제조 기술)

  • Seo, Minhye;Park, Eun Duck
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.596-605
    • /
    • 2019
  • Proton-conducting perovskite ceramic materials are highly promising for solid electrolytes as well as catalysts at high temperatures. Therefore, they possess an outstanding potential for the membrane reactor in which both reaction and separation occur at a same time. Especially, in the case of hydrogen production catalyst, hydrogen separation, and the membrane reactor coupled with catalyst and separation, extensive results have been reported on the effect of the dopant in the solid electrolytes, temperature, and composition of reactants on the performance. In this review, the recent research trend on the application of proton-conducting ceramic materials to hydrogen production catalyst, hydrogen separation, and membrane reactor is surveyed. Moreover, the potential application and prospect of these materials to the next-generation hydrogen production and separation is discussed.

Research Trend of Crystalline Porous Materials for Hydrogen Isotope Separation via Kinetic Quantum Sieving (운동 양자 체(Kinetic Quantum Sieving) 효과를 가진 나노다공성 물질을 활용한 수소동위원소 분리 동향)

  • Lee, Seulji;Oh, Hyunchul
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.465-470
    • /
    • 2021
  • Deuterium is a crucial clean energy source required for nuclear fusion and is a future resource needed in various industries and scientific fields. However, it is not easy to enrich deuterium because the proportion of deuterium in the hydrogen mixture is scarce, at approximately 0.016 %. Furthermore, the physical and chemical properties of the hydrogen mixture and deuterium are very similar. Therefore, the efficient separation of deuterium from hydrogen mixtures is often a significant challenge when using modern separation technologies. Recently, to effectively separate deuterium, studies utilizing the 'Kinetic Quantum Sieving Effect (KQS)' of porous materials are increasing. Therefore, in this review, two different strategies have been discussed for improving KQS efficiency for hydrogen isotope separation performance using nanoporous materials. One is the gating effect, which precisely controls the aperture locally by adjusting the temperature and pressure. The second is the breathing phenomenon, utilizing the volume change of the structure from closed system to open system. It has been reported that efficient hydrogen isotope separation is possible using these two methods, and each of these effects is described in detail in this review. In addition, a specific-isotope responsive system (e.g., 2nd breathing effect in MIL-53) has recently been discovered and is described here as well.

Selective Separation of Hydrogen from Gas Mixture using LaNi5 (LaNi5를 이용한 혼합기체로부터 수소의 선택적 분리)

  • Sun, Yang Kook;Nahm, Kee Suk;Lee, Wha Young
    • Journal of Hydrogen and New Energy
    • /
    • v.1 no.1
    • /
    • pp.15-23
    • /
    • 1989
  • The selective separation of hydrogen from gas mixture containing hydrogen was experimentally studied using $LaNi_5$. The capacity and the rate of hydrogen separation, the purity of recovered hydrogen and the optimum condition of the regeneration of deactivated $LaNi_5$ were investigated. The separation rate and the recovery ratio of hydrogen were slowly decreased with the increase of the number of hydrogen absorption cycle. It was found that this result comes from the deactivation of $LaNi_5$ partly because of the blocking of hydrocarbon compounds in the $LaNi_5$ lattice and partly because of the poisoning of $LaNi_5$ surface by carbon monoxide contained in the gas mixture. The optimum condition for the regeneration of deactivated $LaNi_5$ was obtained by heating in a vacuum to about 637 K. The recovery ratio of hydrogen at the optimum condition was observed to be about 80%. The rates of hydrogen separation were measured in the ${\alpha}$-phase and two phase regions. The rate equations could be expressed as follows ; ${\alpha}$ - phase : $$-\frac{dP{_{H_2}}}{dt}=9.836{\times}10^{-3}(P{_{H_2}}_{-P_{eq}})$$ two phase region : $$-\frac{dP_{H{_2}}}{dt}=1.6909{\times}10^2\exp(-17560/RT)(P{_{H_2}}_{-P_{eq}})$$.

  • PDF

Chromatographic Separation of Hydrogen Isotopes by Deactivated Alumina Stationary Phase (비활성 알루미나 고정상을 이용한 수소동위원소의 크로마토그래피 분리)

  • Kim, Kwang Rag;Lee, Sung Ho;Kang, Hee Suk;Chung, Hongsuk;Sung, Ki Woung
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.121-128
    • /
    • 1998
  • In fields of operating or handling a hydrogen isotope facility, and of the technology for nuclear fusion source management, gas chromatography has been used as one of the practical techniques lot separation and enrichment of hydrogen isotopic gases including tritium. Chromatographic separation experiments of the hydrogen isotope mixture (hydrogen, deuterium and tritium) were carried out by use of a commercially available gas chromatograph. An aliquot of gas sample was injected by a specially designed vacuum sampler into the stream of inert carrier gas which went through the separation column under liquid nitrogen temperature. The complete separation of hydrogen isotopic molecules was observed with an alumina adsorbent partially deactivated by coating with 10% manganese chlorine. In addition, fairly good separation conditions were obtained without any appearance of nuclear spin isomers with shorter retention time, which would be available for the practical applications of the hydrogen isotope separation and enrichment.

  • PDF

Hydrogen Separation by Compact-type Silica Membrane Process (컴팩트 타입 실리카막 공정을 이용한 수소 분리)

  • Moon, Jong-Ho;Bae, Ji-Han;Lee, Sang-Jin;Chung, Jong-Tae;Lee, Chang-Ha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.336-339
    • /
    • 2006
  • With the steady depletion off fossil fuel reserves, hydrogen based energy sources become increasingly attractive. Therefore hydrogen production or separation technologies, such as Bas separation membrane based on adsorption technology, have received enormous attention in the industrial and academic fields. In this study, the transport mechanisms of the MTES (methyltriethoxysilane) templating silica/a-alumina composite membrane were evaluated by using unary, binary and quaternary hydrogen gas mixtures permeation experiments at unsteady- and steady-states. Since the permeation flux in the MTES membrane, through the experimental and theoretical study, was affected by molecular sieving effects as well as surface diffusion properties, the kinetic and equilibrium separation should be considered simultaneously in the membrane according to molecular properties. In order to depict the transient multi-component permeation on the templating silica membrane, the GMS (generalized Maxwell-Stefan) and DGM (dust Bas model) were adapted to unsteady-state material balance

  • PDF

An Investigation of Hazard Distance in a Series of Hydrogen Jet Fire with the Hyram Tools (수소 누출 시 제트화재 피해 범위에 대한 분석)

  • KANG, BYOUNG WOO;LEE, TAECK HONG
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.2
    • /
    • pp.166-173
    • /
    • 2017
  • For commercialization of hydrogen refuelling station (HRS), we need to reduce the clearance distance for jet fire in the real entities in the HRS. Thus, we revisited the current regulations of clearance distance for jet fire in the law. The law in korea has been set up by replica of japan, not by our own scientific basis. Recently, sandia lab developed Hydrogen Risk Assessment Model (HyRAM) tools and we simulated a series of circumstances such as 10 to 850 bar with several leak hole sizes. In 850 bar with 10 mm diameter hole leak cases, it shows $4,981kW/m^2$ at 12 m separation from leak source and $1,774kW/m^2$ at 17 m separation from leak source. In 850 bar with 1 mm diameter leak hole, it shows $0.102kW/m^2$ at 12 m separation and $0.044kW/m^2$ at 17 m separation. Current law may be acceptable with 1 mm hole size with 850 bar.

A Brief Review on Membrane-Based Hydrogen Isotope Separation (막 기반 수소동위원소 분리 연구에 대한 총설)

  • Soon Hyeong So;Dae Woo Kim
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.114-123
    • /
    • 2024
  • Hydrogen isotopes can be categorized into light hydrogen, heavy hydrogen, and tritium based on the number of neutrons, each of which is used in specific fields. Specifically, deuterium is of interest in the electronics industry, nuclear energy industry, analytical technology industry, pharmaceutical industry, and telecommunications industry. Conventional methods such as cold distillation, thermal cycling absorption processes, Girdler sulfide processes, and water electrolysis have their own advantages and disadvantages, leading to the need for alternative technologies with high separation and energy efficiency. In this context, membrane-based hydrogen isotope separation is one of the promising solutions to reduce energy consumption. In this review, we will present the state-of-the-art in hydrogen isotope separation using membranes and their operating principles. The technology for separating hydrogen isotopes using membranes is just beginning to be conceptualized, and many challenges remain to be overcome. However, if achieved, the economic benefits are expected to be significant. We will discuss future research directions for this purpose.

$Ba[Ce_{0.9}Y_{0.1}]O_{3-\delta}$ - Ni Composite Membrane for Hydrogen Separation by Aerosol Deposition Method (에어로졸 증착법[aerosol depostion method]에 의한 $Ba[Ce_{0.9}Y_{0.1}]O_{3-\delta}$ - Ni 수소분리막 제조)

  • Park, Young-Soo;Byeon, Myeong-Seob;Choi, Jin-Sub;Kim, Jin-Ho;Hwang, Kwang-Taek
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.2
    • /
    • pp.117-122
    • /
    • 2010
  • BCY($Ba(Ce_{0.9}Y_{0.1})O_{3-\delta}$) oxide, shows high protonic conductivity at high temperatures, and are referred to as hydrogen separation membrane. For high efficiency of hydrogen separation ($H_2$ flux and selectivity) and low fabrication cost, ultimate thin and dense BCY-Ni layer have to be coated on a porous substrate such as $ZrO_2$. Aerosol depostion (AD) process is a novel technique to grow ceramic film with high density and nano-crystal structure at room-temperature, and would be applied to the fabrication process of AD integration ceramic layer effectively. XRD and SEM measurements were conducted in order to analyze the characteristics of BCY-Ni membrane fabricated by AD process.

Investigation of Cryogenic Breakthrough Curve Measurement System at 77 K for Hydrogen Isotopologue Separation (수소 동위원소 분리를 위한 77 K 극저온 파과 곡선 측정 시스템 제작)

  • Kim, Suhwan;Oh, Hyunchul
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.36-43
    • /
    • 2022
  • Breakthrough analysis has widely been explored for the dynamic separation of gaseous mixtures in porous materials. In general, breakthrough experiments measure the components of a flowing gas when a gaseous mixture is injected into a column filled with an adsorbent material. In this paper, we report on the design and fabrication of a breakthrough curve measurement device to study the dynamic adsorptive separation of hydrogen isotopologues in porous materials. Using the designed system, an experiment was conducted involving a 1:1 mixture of hydrogen and deuterium passed through a column filled with zeolite 13X (1 g). At room temperature, both hydrogen and deuterium were adsorbed in negligible amounts; however, at a temperature of 77 K, deuterium was preferentially adsorbed over hydrogen. The selectivity was different from that in the existing literature due to the different sample shapes, measurement methods, and column structures, but was at a similar level to that of cryogenic distillation (1.5).

Thermodynamics of Hydrogen-Induced Phase Separation on Pd-Co Alloys (수소유기에 따른 Pd-Co합금들의 상 분리 현상에 대한 열역학적 고찰)

  • Song, D.M.;Park, C.N.;Choi, J.
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.3
    • /
    • pp.244-252
    • /
    • 2005
  • It is very interesting and important in the academic point of view and in practical use the hydrogen-induced phase separation(HIPS) which appears during hydrogen heat treatment. Since hydrogen can be removed very fast by pumping it out the hydrogen-induced new lattice phase which can not be obtained without hydrogen can be preserved as meta-stable state. In this study it has been investigated whether the HIPS appear in Pd-Al, Pd-Co, Pd-Cr, Pd-Ti, Pd-V and Pd-Zr alloys and discussed thermodynamic representation of the HIPS. The Pd alloys were arc-melted under argon atmosphere and remelted 4 or 5 times for homogenization. The alloys were annealed at 600$^{\circ}C$ under vacuum for 24 hrs and then subjected to pressure-composition isotherm measurements at 100$^{\circ}C$. The hydrogen heat treatment(HHT) of samples was carried out at 600$^{\circ}C$ under hydrogen pressure of 70 bar for 6 days and PC isotherms at 100$^{\circ}C$ were measured. By comparing the PC isotherms measured before and after HHT, occurrence of phase separation was determined. The experimental results showed that the HIPS appeared only in Pd-0.05Co alloy. For Pd-Co alloys with various composition the PC isotherms were measured. By adopting Park-Flanagan model for ternary thermodynamics the Gibbs free energy change for Pd-Co-H solid solution was calculated and subsequently with this the HIPS in Pd-Co alloy was explained fairly.