Browse > Article
http://dx.doi.org/10.9713/kcer.2019.57.5.596

Hydrogen Separation and Production using Proton-Conducting Ceramic Membrane Catalytic Reactors  

Seo, Minhye (Plant Engineering Division, Institute for Advanced Engineering)
Park, Eun Duck (Department of Energy Systems Research, Ajou University)
Publication Information
Korean Chemical Engineering Research / v.57, no.5, 2019 , pp. 596-605 More about this Journal
Abstract
Proton-conducting perovskite ceramic materials are highly promising for solid electrolytes as well as catalysts at high temperatures. Therefore, they possess an outstanding potential for the membrane reactor in which both reaction and separation occur at a same time. Especially, in the case of hydrogen production catalyst, hydrogen separation, and the membrane reactor coupled with catalyst and separation, extensive results have been reported on the effect of the dopant in the solid electrolytes, temperature, and composition of reactants on the performance. In this review, the recent research trend on the application of proton-conducting ceramic materials to hydrogen production catalyst, hydrogen separation, and membrane reactor is surveyed. Moreover, the potential application and prospect of these materials to the next-generation hydrogen production and separation is discussed.
Keywords
Proton-conducting ceramics; Perovskite; Hydrogen separation; Membrane; Catalytic membrane reactor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hammani, R., Batis, H. and Minot, C., "Combined Experimental and Theoretical Investigation of the $CO_2$ Adsorption on $LaMnO_{3+y}$ Perovskite Oxide," Surf. Sci., 603(20), 3057-3067(2009).   DOI
2 Evdou, A., Zaspalis, V. and Nalbandian, L., "$La_{(1-x)}Sr_xMnO_{3-{\delta}}$ Perovskites as Redox Materials for the Production of High Purity Hydrogen," Int. J. Hydrogen Energy, 33(20), 5554-5562(2008).   DOI
3 Ponce, S., Pena, M. A. and Fierro, J. L. G., "Surface Properties and Catalytic Performance in Methane Combustion of Sr-substituted Lanthanum Manganites," Appl. Catal. B, 24(3-4), 193-205(2000).   DOI
4 Jiang, S. P., "Development of Lanthanum Strontium Manganite Perovskite Cathode Materials of Solid Oxide Fuel Cells: A Review," J. Mater. Sci., 43(21), 6799-6833(2008).   DOI
5 Viparelli, P., Villa, P., Basile, F., Trifiro, F., Vaccari, A., Nanni, P. and Viviani, M., "Catalyst Based on $BaZrO_3$ with Different Elements Incorporated in the Structure II. $BaZr_{(1-x)}Rh_xO_3$ Systems for the Production of Syngas by Partial Oxidation of Methane," Appl. Catal. A, 280(2), 225-232(2005).   DOI
6 Staniforth, J., Evans, S. E., Good, O. J., Darton, R. J. and Ormerod, R. M., "A Novel Perovskite Based Catalyst with High Selectivity and Activity for Partial Oxidation of Methane for Fuel Cell Applications," Dalton Trans., 43(40), 15022-15027(2014).   DOI
7 Zhang, K., Sunarso, J., Pham, G. H., Wang, S. and Liu, S., "External Short Circuit-assisted Proton Conducting Ceramic Membrane for $H_2$ Permeation," Ceram. Int., 40(1), 791-797(2014).   DOI
8 Yoon, J. S., Lim, Y.-S., Choi, B. H. and Hwang, H. J., "Catalytic Activity of Perovskite-type Doped $La_{0.08}Sr_{0.92}Ti_{1-x}M_xO_{3-{\delta}}$ (M=Mn, Fe, and Co) Oxides for Methane Oxidation," Int. J. Hydrogen Energy, 39(15), 7955-7962(2014).   DOI
9 Morales, M., Espiell, F. and Segarra, M., "Performance and Stability of $La_{0.5}Sr_{0.5}CoO_{3-{\delta}}$ Perovskite as Catalyst Precursor for Syngas Production by Partial Oxidation of Methane," Int. J. Hydrogen Energy, 39(12), 6454-6461(2014).   DOI
10 Wang, Y., Liao, Q., Zhou, L. and Wang, H., "Oxygen Permeability and Structure Stability of a Novel Cobalt-free Perovskite $Gd_{0.33}Ba_{0.67}FeO_{3-{\delta}}$," J. Membr. Sci., 457, 82-87(2014).   DOI
11 Kyriakou, V., Garagounis, I., Vourros, A., Vasileiou, E., Manerbino, A., Coors, W. G., and Stoukides, M., "Methane Steam Reforming at Low Temperatures in a $BaZr_{0.7}Ce_{0.2}Y_{0.1}O_{2.9}$ Proton Conducting Membrane Reactor," Appl. Catal. B, 186, 1-9(2016).   DOI
12 Norby, T. and Larring, Y., "Mixed Hydrogen Ion-electronic Conductors for Hydrogen Permeable Membranes," Solid State Ionics, 136-137, 139-148(2000).   DOI
13 Zhao, L., He, B., Ling, Y., Xun, Z., Peng, R., Meng, G. and Liu, X., "Cobalt-free Oxide $Ba_{0.5}Sr_{0.5}Fe_{0.8}Cu_{0.2}O_{3-{\delta}}$ for Proton-conducting Solid Oxide Fuel Cell Cathode," Int. J. Hydrogen Energy, 35(8), 3769-3774(2010).   DOI
14 Zuo, C. D., Dorris, S. E., Balachandran, U. and Liu, M. L., "Effect of Zr-doping on the Chemical Stability and Hydrogen Permeation of the Ni-$BaCe_{0.8}Y_{0.2}O_{3-{\alpha}}$ Mixed Protonic-electronic Conductor," Chem. Mater., 18(19), 4647-4650(2006).   DOI
15 Meng, B., Zhang, H., Qin, J., Tan, X., Ran, R. and Liu, S., "The Catalytic Effects of $La_{0.3}Sr_{0.7}Fe_{0.7}Cu_{0.2}Mo_{0.1}O_3$ Perovskite and Its Hollow Fibre Membrane for Air Separation and Methane Conversion Reactions," Sep. Purif. Technol., 147, 406-413(2015).   DOI
16 Zhu, D. C., Xu, X. Y., Feng, S. J., Liu, W. and Chen, C. S., "$La_2NiO_4$ Tubular Membrane Reactor for Conversion of Methane to Syngas," Catal. Today, 82(1-4), 151-156(2003).   DOI
17 Morales, M. and Segarra, M., "Steam Reforming and Oxidative Steam Reforming of Ethanol over $La_{0.6}Sr_{0.4}CoO_{3-{\delta}}$ Perovskite as Catalyst Precursor for Hydrogen Production," Appl. Catal. A, 502, 305-311(2015).   DOI
18 Fabbri, E., Bi, L., Tanaka, H., Pergolesi, D. and Traversa, E., "Chemically Stable Pr and Y Co?Doped Barium Zirconate Electrolytes with High Proton Conductivity for Intermediate-Temperature Solid Oxide Fuel Cells," Adv. Funct. Mater., 21(1), 158-166(2011).   DOI
19 Song, J., Meng, B. and Tan, X., "Stability and Electrical Conductivity of $BaCe_{0.85}Tb_{0.05}M_{0.1}O_{3-{\delta}}$ (M = Co, Fe, Y, Zr, Mn) High Temperature Proton Conductors," Ceram. Int., 42(11), 13278-13284 (2016).   DOI
20 He, B., Zhang, L., Zhang, Y., Dong, D., Xu, J., Ling, Y. and Zhao, L., "New Insight into Highly Active Cathode of Proton Conducting Solid Oxide Fuel Cells by Oxygen Ionic Conductor Modification," J. Power Sources, 287, 170-176(2015).   DOI
21 Chen, S. Q., Li, Y. D., Liu, Y. and Bai, X., "Regenerable and Durable Catalyst for Hydrogen Production from Ethanol Steam Reforming," Int. J. Hydrogen Energy, 36(10), 5849-5856(2011).   DOI
22 Zhao, L., Wei, Y., Huang, Y. and Liu, Y., "$La_{1-x}K_xFe_{0.7}Ni_{0.3}O_3$ Catalyst for Ethanol Steam Reforming-The Effect of K-doping," Catal. Today, 259(2), 430-437(2016).   DOI
23 Liu, F., Qu, Y., Yue, Y., Liu, G. and Liu, Y., "Nano Bimetallic Alloy of Ni-Co Obtained from $LaCo_xNi_{1-x}O_3$ and Its Catalytic Performance for Steam Reforming of Ethanol," RSC Adv., 5(22), 16837-16846(2015).   DOI
24 Wang, Z., Wang, C., Chen, S. and Liu, Y., "Co-Ni Bimetal Catalyst Supported on Perovskite Type Oxide for Steam Reforming of Ethanol to Produce Hydrogen," Int. J. Hydrogen Energy, 39(11), 5644-5652(2014).   DOI
25 Kalinci, Y., Hepbasli, A. and Dincer, I., "Techno-econimic Analysis of a Stand-alone Hybrid Renewable Energy System with Hydrogen Production and Storage Options," Int. J. Hydrogen Energy, 40(24), 7652-7664(2015).   DOI
26 Iguchi, F., Yamane, T., Kato, H. and Yugami, H., "Low-temperature Fabrication of an Anode Supported SOFC with a Proton Conducting Electrolyte Based on Lanthanum Scandate Using a PLD Method," Solid State Ionics, 275, 117-121(2015).   DOI
27 Li, M., Ni, M., Su, F. and Xia, C., "Proton Conducting Intermediate-temperature Solid Oxide Fuel Cells Using New Perovskite Type Cathodes," J. Power Sources, 260, 197-204(2014).   DOI
28 Bockris, J. O. M., "The Hydrogen Economy: Its History," Int. J. Hydrogen Energy, 38(6), 2579-2588(2013).   DOI
29 A-Mufachi, N. A., Rees, N. V. and S-Wilkens, R., "Hydrogen Selective Membranes: A Review of Palladuim-based Dense Metal Membranes," Renew. Sustain. Energy Rev., 47, 540-551(2015).   DOI
30 Li, P., Wang, Z., Qiao, Z., Liu, Y., Cao, X., Li, W., Wang, J. and Wang, S., "Recent Development in Membranes for Efficient Hydrogen Purification," J. Membr. Sci., 495, 130-168(2015).   DOI
31 Kamakoti, P., Morreale, B. D., Ciocco, M. V., Howard, B. H., Killmeyer, R. P., Cugini, A. V. and Sholl, D. S., "Prediction of Hydrogen Flux Through Sulfur-tolerant Binary Alloy Membranes," Science, 307(5709), 569-573(2005).   DOI
32 Uemiya, S., Sato, N., Ando, H., Matsuda, T. and Kikuchi, E., "Steam Reforming of Methane in a Hydrogen-permeable Membrane Reactor," Appl. Catal., 67(1), 223-230(1990).   DOI
33 Fabbri, E., Bi, L., Pergolesi, D. and Traversa, E., "Towards the Next Generation of Solid Oxide Fuel Cells Operating below $600^{\circ}C$ with Chemically Stable Proton-conducting Electrolytes," Adv. Mater., 24(2), 195-208(2012).   DOI
34 Menon, V., Banerjee, A., Dailly, J. and Deutschmann, O., "Numerical Analysis of Mass and Heat Transport in Proton-conducting SOFCs with Direct Internal Reforming," Appl. Energy, 149, 161-175(2015).   DOI
35 Hashim, S. S., Somalu, M. R., Loh, K. S., Liu, S., Zhou, W. and Sunarso, J., "Perovskite-based Proton Conducting Membranes for Hydrogen Separation: A Review," Int. J. Hydrogen Energy, 43(32), 15281-15305(2018).   DOI
36 Lukyanov, B. N., Andreev, D. V. and Parmon, V. N., "Catalytic Reactors with Hydrogen Membrane Separation," Chem. Eng. J., 154(1-3), 258-266(2009).   DOI
37 Hamid, M. R. A. and Jeong, H., "Recent Advances on Mixed-matrix Membranes for Gas Separation: Oppertunities and Engineering Challenges," Korean J. Chem. Eng., 35(8), 1599-1600(2018).
38 Adhikari, S. and Fernando, S., "Hydrogen Membrane Separation Techniques," Ind. Eng. Chem. Res., 45(3), 875-881(2006).   DOI
39 Gallucci, F., Fernandez, E., Corengia, P. and van Sint Annaland, M., "Recent Advances on Membranes and Membrane Reactors for Hydrogen Production," Chem, Eng. Sci., 92, 40-66(2013).   DOI
40 Zhu, A., Zhang, G., Wan, T., Shi, T., Wang, H., Wu, M., Wang, C., Huang, S., Guo, Y., Yu, H. and Shao, Z., "Evaluation of $SrSc_{0.175}Nb_{0.025}Co_{0.8}O_{3-{\delta}}$ Perovskite as a Cathode for Proton-conducting Solid Oxide Fuel Cells: The Possibility of In Situ Creating Protonic Conductivity and Electrochemical Performance," Electrochimica Acta, 259, 559-565(2018).   DOI
41 Rahimpour, M. R., Samimi, F., Babapoor, A., Tohidian, T. and Mohebi, S., "Palladium Membranes Applications in Reaction Systems for Hydrogen Separation and Purification: A Review," Chem. Eng. Process, 121, 24-49(2017).   DOI
42 Bi, L., Boulfrad, S. and Traversa, E., "Steam Electrolysis by Solid Oxide Electrolysis Cells (SOECs) with Proton-conducting Oxides," Chem. Soc. Rev., 43(24), 8255-8270(2014).   DOI
43 Song, S.-J., Moon, J.-H., Lee, T. H., Dorris, S. E. and Balachandran, U., "Thickness Dependence of Hydrogen Permeability for Ni-$BaCe_{0.8}Y_{0.2}O_{3-{\delta}}$," Solid State Ionics, 179(33-34), 1854-1857(2008).   DOI
44 Arpornwichanop, A. and Patcharavorachot, Y., "Investigation of a Proton-conducting SOFC with Internal Autothermal Reforming of Methane," Chem. Eng. Res. Des., 91(8), 1508-1516(2013).   DOI
45 Arpornwichanop, A., Patcharavorachot, Y. and Assabumrungrat, S., "Analysis of a Proton-conducting SOFC with Direct Internal Reforming," Chem. Eng. Sci., 65(1), 581-589(2010).   DOI
46 Ni, M., Leung, D. Y. C. and Leung, M. K. H., "Modeling of Methane Fed Solid Oxide Fuel Cells: Comparison Between Proton Conducting Electrolyte and Oxygen Ion Conducting Electrolyte," J. Power Sources, 183(1), 133-142(2008).   DOI
47 Bi, L., Shafi, S. P. and Traversa, E., "Y-doped $BaZrO_3$ as a Chemically Stable Electrolyte for Proton-conducting Solid Oxide Electrolysis cells (SOECs)," J. Mater. Chem. A, 3(11), 5815-5819(2015).   DOI
48 Lei, L., Tao, Z., Wang, X., Lemmon, J. P. and Chen, F., "Intermediate-temperature Solid Oxide Electrolysis Cells with Thin Proton-conducting Electrolyte and a Robust Air Electrode," J. Mater. Chem. A, 5(44), 22945-22951(2017).   DOI
49 Fang, S., Brinkman, K. S. and Chem, F., "Hydrogen Permeability and Chemical Stability of Ni-$BaZr_{0.1}Ce_{0.7}Y_{0.1}Yb_{0.1}O_{3-{\delta}}$ Membrane in Concentrated $H_2O$ and $CO_2$," J. Mem. Sci., 467, 85-92(2014).   DOI
50 Kim, H., Kim, B., Lee, J., Ahn, K., Kim, H.-R., Yoon, K. J., Kim, B.-K., Cho, Y. W., Lee, H.-W. and Lee, J.-H., "Microstructural Adjustment of Ni-$BaCe_{0.9}Y_{0.1}O_{3-{\delta}}$ Cermet Membrane for Improved Hydrogen Permeation," Ceram. Int., 40(3), 4117-4126 (2014).   DOI
51 Song, S.-J., Lee, T. H., Wachsman, E. D., Chen, L., Dorris, S. E. and Balachandran, U., "Defect Structure and Transport Properties of Ni-$SrCeO_{3-{\delta}}$ Cermet for Hydrogen Separation Membrane," J. Electrochem. Soc., 152(11), J125-129(2005).   DOI
52 Zhu, Z., Sun, W., Yan, L., Liu, W. and Liu, W., "Synthesis and Hydrogen Permeation of Ni-$Ba(Zr_{0.1}Ce_{0.7}Y_{0.2})O_{3-{\delta}}$ Metal-ceramic Asymmetric Membranes," Int. J. Hydrogen Energy, 36(10), 6337-6342(2011).   DOI
53 Wang, T., Wang, H., Meng, X., Meng, B., Tan, X., Sunarso, J. and Liu, S., "Enhanced Hydrogen Permeability and Reverse Water-gas Shift Reaction Activity via Magneli $Ti_4O_7$ Doping into $SrCe_{0.9}Y_{0.1}O_{3-{\delta}}$ Hollow Fiber Membrane," Int. J. Hydrogen Energy, 42(17), 12301-12309(2017).   DOI
54 Meng, X., Song, J., Yang, N., Meng, B., Tan, X., Ma, Z.-F. and Li, K., "Ni-$BaCe_{0.95}Tb_{0.05}O_{3-{\delta}}$ Cermet Membranes for Hydrogen Permeation," J. Mem. Sci., 401-402, 300-305(2012).   DOI
55 Rosensteel, W. A. and Sullivan, N. P., "Fabrication and Hydrogen Permeation through Novel $BaZr_{0.9}Y_{0.1}O_{3-{\delta}}$-Cu Composite Ceramic-metallic Membranes," Int. J. Hydrogen Energy, 42(7), 4216-4223 (2017).   DOI
56 Kim, J.-H., "High Purity Hydrogen and Carbon Production by Direct Cracking of Methane Using Mixed Conducting Ceramic Membranes," Master Thesis, Hanyang University, Seoul(2011).
57 Song, I. H., Park, Y J., Lee, C. R, Choe, J. H., Kim, Y. J. and Kim, H. D., "Current Status of Porous Ceramic Membrane Materials for Hydrogen Separation," Ceramist, 10(6), 40-49(2007).
58 Wang, H., Wang, X., Meng, B., Tan, X., Loh, K. S., Sunaro, J. and Liu, S., "Provskite-based Mixed Protonic-electronic Conducting Membranes for Hydrogen Separation: Recent Status and Advances," J. Ind. Eng. Chem., 60, 297-306(2018).   DOI
59 Guan, J., Dorris, S. E., Balachandran, U. and Liu, M., "Transport Properties of $BaCe_{0.95}Y_{0.05}O_{3-{\alpha}}$, Mixed Conductors for Hydrogen Separation," Solid State Ionics, 100(1-2), 45-52(1997).   DOI
60 Liang, K. C., Du, Y. and Nowick, A. S., "Fast High-temperature Proton Transport in Nonstoichiometric Mixed Perovskites," Solid State Ionics, 69(2), 117-120(1994).   DOI
61 Kreuer, K. D., "Proton-conducting Oxides," Annu. Rev. Mater. Res., 33(1), 333-359(2003).   DOI
62 Ranlov, J. and Nielsen, K., "Crystal Structure of the High Temperature Protonic Conductor $SrCeO_3$," J. Mater. Chem., 4(6), 867-868(1994).   DOI
63 Hua, B., Li, M., Sun, Y. F., Li, J. H. and Luo, J. L., "Enhancing Perovskite Electrocatalysis of Solid Oxide Cells Through Controlled Exsolution of Nanoparticles," ChemSusChem, 10(17), 3333-3341 (2017).   DOI
64 Lei, L., Keels, J. M., Tao, Z., Zhang, J. and Chen, F., "Thermodynamic and Experimental Assessment of Proton Conducting Solid Oxide Fuel Cells with Internal Methane Steam Reforming," Appl. Ener., 224(15), 280-288(2018).   DOI
65 Nowick, A. S. and Du, Y., "High-temperature Protonic Conductors with perovskite-related Structures," Solid State Ionics, 77, 137-146(1995).   DOI
66 Wei, Y., Xue, J., Fang, W., Chen, Y., Wang, H. and Caro, J., "Enhanced Stability of Zr-doped $Ba(CeTb)O_{3-{\delta}}$-Ni Cermet Membrane for Hydrogen Separation," Chem. Comm., 51(58), 11619-11621(2015).   DOI
67 Zhu, Z., Sun, W., Dong, Y., Wang, Z., Shi, Z., Zhang, Q. and Liu, W., "Evaluation of Hydrogen Permeation Properties of NieBa $(Zr_{0.7}Pr_{0.1}Y_{0.2})O_{3-{\delta}}$ Cermet Membranes," Int. J. Hydrogen Energy, 39(22), 11683-11689(2014).   DOI
68 Fang, S., Bi, L., Yan, L., Sun, W., Chen, C. and Liu, W., "$CO_2$-Resistant Hydrogen Permeation Membranes Based on Doped Ceria and Nickel," J. Phys. Chem., 114(24), 10986-10991(2010).   DOI
69 Yan, L., Sun, W., Bi, L., Fang, S., Tao, Z. and Liu, W., "Effect of Sm-doping on the Hydrogen Permeation of Ni-$La_2Ce_2O_7$ Mixed Protonic-electronic Conductor," Int. J. Hydrogen Energy, 35(10), 4508-4511(2010).   DOI
70 Irvine, J. T. S., Neagu, D., Verbraeken, M. C., Chatzichristodoulou, C., Graves, C. and Mogensen, M., "Evolution of the Electrochemical Interface in High-Temperature Fuel Cells and Electrolysers," Nat. Energy, 1(1), 15014-15026(2016).   DOI
71 Liese, E. A. and Gemmen, R. S., "Performance Comparison of Internal Reforming against External Reforming in a Solid Oxide Fuel Cell, Gas Turbine Hybrid System," J. Eng. Gas Turbines Power, 127(1), 86-90(2005).   DOI
72 Caprariis, B., Filippis, P., Palma, V., Petrullo, A., Ricca, A., Ruocco, C. and Scarsella, M., "Rh, Ru and Pt Ternary Perovskites Type Oxides $BaZr_{(1-x)}Me_xO_3$ for Methane Dry Reforming," Appl. Catal. A, 517, 47-55(2016).   DOI
73 Zhan, S., Zhu, X., Ji, B., Wang, W., Zhang, X., Wang, J., Yang, W. and Lin, L., "Preparation and Hydrogen Permeation of $SrCe_{0.95}Y_{0.05}O_{3-{\delta}}$ Asymmetrical Membranes," J. Mem. Sci., 340(1-2), 241-248(2009).   DOI
74 Malerod-Fjeld, H., Clark, D., Yuste-Tirados, I., Zanon, R., Catalian-Martinez, D., Beeaff, D., Morejudo, S. H., Vestre, P. K., Notby, T., Haungsrud, R., Serra, J. M. and Kjolseth, C., "Thermo-electrochemical Production of Compressed Hydrogen from Methane with Near-zero Energy Loss," Nat. Energy, 2(12), 923-931 (2017).   DOI
75 Li, J., Yoon, H., Oh, T. -K. and Wachsman, E. D., "High Temperature $SrCe_{0.9}Eu_{0.1}O_{3-{\delta}}$ Proton Conducting Membrane Reactor for $H_2$ Production Using the Water-gas Shift Reaction," Appl. Catal. B, 92(3-4), 234-239(2009).   DOI
76 Matzke, T., Stimming, U., Karmonik, C., Soetrantmo, M., Hempelmann, R. and Guthoff, F., "Quasielastic Thermal Neutron Scattering Experiment on the Proton Conductor $SrCe_{0.95}Yb_{0.05}H_{0.02}O_{2.985}$," Solid State Ionics, 86-88, 621-628(1996).   DOI
77 Chen, Y., Wei, Y., Zhuang, L., Xie, H. and Wang, H., "Effect of Pt Layer on the Hydrogen Permeation Property of $La_{5.5}W_{0.45}Nb_{0.15}Mo_{0.4}O_{11.25-{\delta}}$ Membrane," J. Mem. Sci., 552, 61-67(2018).   DOI
78 Hamakawa, S., Li, L., Li, A. and Iglesia, E., "Synthesis and Hydrogen Permeation Properties of Membranes Based on Dense $SrCe_{0.95}Yb_{0.05}O_{3-{\alpha}}$ Thin Films," Solid State Ionics, 148(1-2), 71-81(2002).   DOI
79 Wei, Y., Xue, J., Wang, H. and Caro, J., "Hydrogen Permeability and Stability of $BaCe_{0.85}Tb_{0.05}Zr_{0.1}O_{3-{\delta}}$ Asymmetric Membranes," J. Mem. Sci., 488, 173-181(2015).   DOI
80 Liu, M., Sun, W., Li, X., Feng, S., Ding, D., Chen, D., Liu, M. and Park, H. C., "High-performance Ni-$BaZr_{0.1}Ce_{0.7}Y_{0.1}Yb_{0.1}O_{3-{\delta}}$ (BZCYYb) Membranes for Hydrogen Separation," Int. J. Hydrogen Energy, 38(34), 14743-14749(2013).   DOI
81 Pino, L., Italiano, C., Vita, A., Lagana, M. and Recupero, V., "$Ce_{0.7}0La_{0.20}Ni_{0.10}O_{2-{\delta}}$ Catalyst for Methane Dry Reforming: Influence of Reduction Temperature on the Catalytic Activity and Stability," Appl. Catal. B, 218, 779-792(2017).   DOI
82 Zhu, Z., Yan, L., Liu, H., Sun, W., Zhang, Q. and Liu, W., "A Mixed Electronic and Protonic Conducting Hydrogen Separation Membrane with Asymmetric Structure," Int. J. Hydrogen Energy, 37(17), 12708-12713(2012).   DOI
83 Shang, Y., Wei, L., Meng, X., Meng, B., Yang, N., Sunarso, J. and Liu, S., "$CO_2$-enhanced Hydrogen Permeability of Dual-layered A-site Deficient $Ba_{0.95}Ce_{0.85}Tb_{0.05}Zr_{0.1}O_{3-{\delta}}$-based Hollow Fiber Membrane," J. Mem. Sci., 546, 82-89(2018).   DOI
84 Seo, M. H., Kim, S. Y., Kim, Y. D., Park, E. D. and Uhm, S., "Highly Stable Barium Zirconate Supported Nickel Oxide Catalyst for Dry Reforming of Methane: From powders toward shaped catalysts," Int. J. Hydrogen Energy, 43(24), 11355-11362(2018).   DOI
85 Dama, S., Ghodke, S. R., Bobade, R., Gurav, H. R. and Chilukuri, S., "Active and Durable Alkaline Earth Metal Substituted Perovskite Catalysts for Dry Reforming of Methane," Appl. Catal. B, 224, 146-158(2018).   DOI
86 Wan, T., Zhu, A., Guo, Y., Wang, C., Huang, S., Chen, H., Yang, G., Wang, W. and Shao, Z., "Co-generation of Electricity and Syngas on Proton-conducting Solid Oxide Fuel Cell with a Perovskite Layer as a Precursor of a Highly Efficient Reforming Catalyst," J. Power Sources, 348, 9-15(2017).   DOI
87 Hayakawa, T., Suzuki, S., Nakamura, J., Uchijima, T., Hamakawa, S., Suzuki, K., Shishido, T. and Takahira, K., "$CO_2$ Reforming of $CH_4$ over Ni/perovskite Catalysts Prepared by Solid Phase Crystallization Method," Appl. Catal. A, 183(2), 273-285(1999).   DOI
88 Wei, T., Jia, L., Zheng, H., Chi, B., Pu, J. and Li, J., "$LaMnO_3$-based Perovskite with In-situ Exsolved Ni Nanoparticles: A Highly Active, Performance Stable and Coking Resistant Catalyst for $CO_2$ Dry Reforming of $CH_4$," Appl. Catal. B, 564, 199-207(2018).   DOI
89 Song, J., Meng, B., Tan, X. and Liu, S., "Surface-modified Proton Conducting Perovskite Hollow Fibre Membranes by Pd-coating for Enhanced Hydrogen Permeation," Int. J. Hydrogen Energy, 40(18), 6118-6127(2015).   DOI
90 Cao, Y., Chi, B., Pu, J. and Jian, L., "Effect of Pt Catalyst and External Circuit on the Hydrogen Permeation of Mo and Nb co-doped Lanthanum Tungstate," J. Mem. Sci., 533, 336-341(2017).   DOI
91 Kniep, J. and Lin, Y. S., "Effect of Zirconium Doping on Hydrogen Permeation through Strontium Cerate Membranes," Ind. Eng. Chem. Res., 49(6), 2768-2774(2010).   DOI
92 Escolastico, S., Solis, C., Kjoleth, C. and Serra, J. M., "Catalytic Layer Optimization for Hydrogen Permeation Membranes Based on $La_{5.5}WO_{11.25-{\delta}}/La_{0.87}Sr_{0.13}CrO_{3-{\delta}}$ Composites," ACS Appl. Mater. Interfaces, 9(41), 35749-35756(2017).   DOI
93 Wei, X., Kniep, J. and Lin, Y. S., "Hydrogen Permeation through Terbium doped Strontium Cerate Membranes Enabled by Presence of Reducing Gas in the Downstream," J. Mem. Sci., 345(1-2), 201-206(2009).   DOI
94 Arandiyan, H. R., Peng, Y., Liu, C. and Chang, H., "Effects of Noble Metals Doped on Mesoporous LaAlNi Mixed Oxide Catalyst and Identification of Carbon Deposit for Reforming $CH_4$ with $CO_2$," J. Chem. Technol. Biotechno., 89(3), 372-381(2014).   DOI
95 Sutthiumporn, K. and Kawi, S., "Promotional Effect of Alkaline Earth over Ni-$La_2O_3$ Catalyst for $CO_2$ Reforming of $CH_4$: Role of Surface Oxygen Species on $H_2$ Production and Carbon Suppression," Int. J. Hydrogen Energy, 36(22), 14435-14446(2011).   DOI
96 Mather, G. C., Poulidi, D., Thursfield, A., Pascual, M. J. Jurado, J. R. and Metcalfe, I. S., "Hydrogen-permeation Characteristics of a $SrCeO_3$-based Ceramic Separation Membrane: Thermal, Ageing and Surface-modification Effects," Solid State Ionics, 181(3-4), 230-235(2010).   DOI
97 Yuan, W., Xiao, C. and Li, L., "Hydrogen Permeation and Chemical Stability of In-doped $SrCe_{0.95}Tm_{0.05}O_{3-{\delta}}$ Membranes," J. Alloys Compd., 616, 142-147(2014).   DOI
98 Zhang, H. and Wilhite, B. A., "Electrical Conduction and Hydrogen Permeation Investigation on Iron-doped Barium Zirconate Membrane," J. Mem. Sci., 512, 104-110(2016).   DOI
99 Bhavani, A. G. and Lee, J. S., "Autothermal $CO_2$ Reforming with Methane over Crystalline $LaMn_{1-x}Ni_xO_3$ Perovskite Catalysts," Int. J. Min. Met. Mater., 3(1), 1-6(2018).
100 Sutthiumporn, K., Maneerung, T., Kathiraser, Y. and Kawi, S., "$CO_2$ Dry-reforming of Methane over $La_{0.8}Sr_{0.2}Ni_{0.8}M_{0.2}O_3$ Perovskite (M = Bi, Co, Cr, Cu, Fe): Roles of Lattice Oxygen on C-H Activation and Carbon Suppression," Int. J. Hydrogen Energy, 37(15), 11195-11207(2012).   DOI
101 Valderrama, G., Navarro, U. and Goldwasser, M. R., "$CO_2$ Reforming of $CH_4$ over Co-La-based Perovskite-type Catalyst Precursors," J. Power Sources, 234, 31-37(2013).   DOI
102 Yadav, P. K. and Das, T., "Production of Syngas from Carbon Dioxide Reforming of Methane by Using $LaNi_xFe_{1-x}O_3$ Perovskite Type Catalysts," Int. J. Hydrogen Energy, 44(3), 1659-1670(2019).   DOI
103 Gomes, R., Costa, D., Junior, R., Santos, M., Rodella, C., Frety, R., Beratta, A. and Brandao, S., "Dry Reforming of Methane over NiLa-Based Catalysts: Influence of Synthesis Method and Ba Addition on Catalytic Properties and Stability," Catalysts, 9(4), 313-326(2019).   DOI