DOI QR코드

DOI QR Code

Research Trend of Crystalline Porous Materials for Hydrogen Isotope Separation via Kinetic Quantum Sieving

운동 양자 체(Kinetic Quantum Sieving) 효과를 가진 나노다공성 물질을 활용한 수소동위원소 분리 동향

  • Lee, Seulji (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University) ;
  • Oh, Hyunchul (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University)
  • 이슬지 (경상국립대학교 에너지공학과, 미래융복합기술연구소) ;
  • 오현철 (경상국립대학교 에너지공학과, 미래융복합기술연구소)
  • Received : 2021.06.18
  • Accepted : 2021.07.14
  • Published : 2021.08.27

Abstract

Deuterium is a crucial clean energy source required for nuclear fusion and is a future resource needed in various industries and scientific fields. However, it is not easy to enrich deuterium because the proportion of deuterium in the hydrogen mixture is scarce, at approximately 0.016 %. Furthermore, the physical and chemical properties of the hydrogen mixture and deuterium are very similar. Therefore, the efficient separation of deuterium from hydrogen mixtures is often a significant challenge when using modern separation technologies. Recently, to effectively separate deuterium, studies utilizing the 'Kinetic Quantum Sieving Effect (KQS)' of porous materials are increasing. Therefore, in this review, two different strategies have been discussed for improving KQS efficiency for hydrogen isotope separation performance using nanoporous materials. One is the gating effect, which precisely controls the aperture locally by adjusting the temperature and pressure. The second is the breathing phenomenon, utilizing the volume change of the structure from closed system to open system. It has been reported that efficient hydrogen isotope separation is possible using these two methods, and each of these effects is described in detail in this review. In addition, a specific-isotope responsive system (e.g., 2nd breathing effect in MIL-53) has recently been discovered and is described here as well.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020M2A8A5023553).

References

  1. J. Galewsky, H. C. Steen-Larsen, R. D. Field, J. Worden, C. Risi and M. Schneider, Geophys. Res. Lett., 54, 809 (2016).
  2. E. Bertel and G. Stevens, Proceedings of the 11th Pacific Basin Nuclear Conference, 739-747, 11, Canada (1998).
  3. H. Oh and M. Hirscher, Eur. J. Inorg. Chem., 2016, 4278 (2016). https://doi.org/10.1002/ejic.201600253
  4. J. Beenakker, V. Borman and S. Y. Krylov, Chem. Phys. Lett., 232, 379 (1995). https://doi.org/10.1016/0009-2614(94)01372-3
  5. T. Nguyen, H. Jobic and S. Bhatia, Phys. Rev. Lett., 105, 085901 (2010). https://doi.org/10.1103/PhysRevLett.105.085901
  6. J. Y. Kim, H. Oh and H. R. Moon, Adv. Mater., 31, 1805293 (2019). https://doi.org/10.1002/adma.201805293
  7. S. L. James, Chem. Soc. Rev., 32, 276 (2003). https://doi.org/10.1039/b200393g
  8. A. K. Cheetham, C. Rao and R. K. Feller, Chem. Comm., 2006, 4780 (2006). https://doi.org/10.1039/b610264f
  9. H. Oh, K. S. Park, S. B. Kalidindi, R. A. Fischer and M. Hirscher, J. Mater. Chem. A, 1, 3244 (2013). https://doi.org/10.1039/c3ta01544k
  10. J. Teufel, H. Oh, M. Hirscher, M. Wahiduzzaman, L. Zhechkov, A. Kuc, T. Heine, D. Denysenko and D. Volkmer, Adv. Mater., 25, 635 (2013). https://doi.org/10.1002/adma.201203383
  11. H. Oh, S. B. Kalidindi, Y. Um, S. Bureekaew, R. Schmid, R. A. Fischer and M. Hirscher, Angew. Chem. Int. Ed., 52, 13219 (2013). https://doi.org/10.1002/anie.201307443
  12. L. Zhang, S. Jee, J. Park, M. Jung, D. Wallacher, A. Franz, W. Lee, M. Yoon, K. Choi and M. Hirscher, J. Am. Chem. Soc., 141, 19850 (2019). https://doi.org/10.1021/jacs.9b10268
  13. J. Y. Kim, L. Zhang, R. Balderas-Xicohtencatl, J. Park, M. Hirscher, H. R. Moon and H. Oh, J. Am. Chem. Soc., 139, 17743 (2017). https://doi.org/10.1021/jacs.7b10323
  14. J. Y. Kim, J. Park, J. Ha, M. Jung, D. Wallacher, A. Franz, R. Balderas-Xicohtencatl, M. Hirscher, S. G. Kang and J. T. Park, J. Am. Chem. Soc., 142, 13278 (2020). https://doi.org/10.1021/jacs.0c04277
  15. R. Muhammad, S. Jee, M. Jung, J. Park, S. G. Kang, K. M. Choi and H. Oh, J. Am. Chem. Soc, 143, 8232 (2021). https://doi.org/10.1021/jacs.1c01694
  16. M. Jung, J. Park, R. Muhammad, J. Y. Kim, V. Grzimek, M. Russina, H. R. Moon, J. T. Park and H. Oh, Adv. Mater., 33, 2007412 (2021). https://doi.org/10.1002/adma.202007412