Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.1.36

Investigation of Cryogenic Breakthrough Curve Measurement System at 77 K for Hydrogen Isotopologue Separation  

Kim, Suhwan (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University)
Oh, Hyunchul (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University)
Publication Information
Korean Journal of Materials Research / v.32, no.1, 2022 , pp. 36-43 More about this Journal
Abstract
Breakthrough analysis has widely been explored for the dynamic separation of gaseous mixtures in porous materials. In general, breakthrough experiments measure the components of a flowing gas when a gaseous mixture is injected into a column filled with an adsorbent material. In this paper, we report on the design and fabrication of a breakthrough curve measurement device to study the dynamic adsorptive separation of hydrogen isotopologues in porous materials. Using the designed system, an experiment was conducted involving a 1:1 mixture of hydrogen and deuterium passed through a column filled with zeolite 13X (1 g). At room temperature, both hydrogen and deuterium were adsorbed in negligible amounts; however, at a temperature of 77 K, deuterium was preferentially adsorbed over hydrogen. The selectivity was different from that in the existing literature due to the different sample shapes, measurement methods, and column structures, but was at a similar level to that of cryogenic distillation (1.5).
Keywords
breakthrough measurement; hydrogen isotope separation; zeolite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. Friedman, Geochim. Cosmochim. Acta, 4, 89 (1953).   DOI
2 H. K. Rae, Acs. Sym. Ser., 68, 1 (1978).
3 J. Y. Kim, H. Oh and H. R. Moon, Adv. Mater., 31, 1805293 (2019).   DOI
4 H. Chen and D. S. Sholl, Langmuir, 23, 6431 (2007).   DOI
5 J. J. M. Beenakker, V. D. Borman and S. Y. Krylov, Chem. Phys. Lett., 232, 379 (1995).   DOI
6 H. Oh and M. Hirscher, Eur. J. Inorg. Chem., 2016, 4278 (2016).   DOI
7 G. S. Bohart and E. Q. Adams, J. Am. Chem. Soc., 42, 523 (1920).   DOI
8 J. Cruz-Olivares, C. Perez-Alonso, C. Barrera-Diaz, F. Urena-Nunez, M. C. Chaparro-Mercado and B. Bilyeu, Chem. Eng. J., 228, 21 (2013).   DOI
9 S. A. FitzGerald, D. Mukasa, K. H. Rigdon, N. Zhang and B. R. Barnett, J. Phys. Chem. C, 123, 30427 (2019).   DOI
10 S. Niimura, T. Fujimori, D. Minami, Y. Hattori, L. Abrams, D. Corbin, K. Hata and K. Kaneko, J. Am. Chem. Soc., 134, 18483 (2012).   DOI
11 Y. H. Yoon, J. H. Nelson, J. Lara, C. Kamel and D. Fregeau, Am. Ind. Hyg. Assoc. J., 53, 493 (1992).   DOI
12 X.-Z. Chu, Z.-P. Cheng, Y.-J. Zhao, J.-M. Xu, M.-S. Li, L. Zhou and C.-H. Lee, Sep. Purif. Technol., 146, 168 (2015).   DOI
13 S. Kaufman and W. F. Libby, Phys. Rev., 93, 1337 (1954).   DOI
14 R. Muhammad, S. Kim, J. Park, M. Jung, M. E. Lee, J. Chung, H. Jang and H. Oh, Mater. Chem. Front., 5, 8018 (2021).   DOI
15 D. P. Broom and M. Hirscher, Energy Environ. Sci., 9, 3368 (2016).   DOI
16 H. Oh, K. S. Park, S. B. Kalidindi, R. A. Fischer and M. Hirscher, J. Mater. Chem. A, 1, 3244 (2013).   DOI
17 M. S. P. Silva, M. A. Moreira, A. F. P. Ferreira, J. C. Santos, V. M. T. M. Silva, P. S. Gomes, M. Minceva, J. P. B. Mota and A. E. Rodrigues, Chem. Eng. Technol., 35, 1777 (2012).   DOI
18 H. C. Thomas, J. Am. Chem. Soc., 66, 1664 (1944).   DOI