DOI QR코드

DOI QR Code

Investigation of Cryogenic Breakthrough Curve Measurement System at 77 K for Hydrogen Isotopologue Separation

수소 동위원소 분리를 위한 77 K 극저온 파과 곡선 측정 시스템 제작

  • Kim, Suhwan (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University) ;
  • Oh, Hyunchul (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University)
  • 김수환 (경상국립대학교 에너지공학과, 미래융복합기술연구소) ;
  • 오현철 (경상국립대학교 에너지공학과, 미래융복합기술연구소)
  • Received : 2021.12.08
  • Accepted : 2022.01.03
  • Published : 2022.01.27

Abstract

Breakthrough analysis has widely been explored for the dynamic separation of gaseous mixtures in porous materials. In general, breakthrough experiments measure the components of a flowing gas when a gaseous mixture is injected into a column filled with an adsorbent material. In this paper, we report on the design and fabrication of a breakthrough curve measurement device to study the dynamic adsorptive separation of hydrogen isotopologues in porous materials. Using the designed system, an experiment was conducted involving a 1:1 mixture of hydrogen and deuterium passed through a column filled with zeolite 13X (1 g). At room temperature, both hydrogen and deuterium were adsorbed in negligible amounts; however, at a temperature of 77 K, deuterium was preferentially adsorbed over hydrogen. The selectivity was different from that in the existing literature due to the different sample shapes, measurement methods, and column structures, but was at a similar level to that of cryogenic distillation (1.5).

Keywords

Acknowledgement

This research was supported by the 2021 Post-Doc. fellowship Program of Gyeongsang National University, and also the National Research Foundation of Korea (NRF) grant (No. 2020M2D2A1A02069267).

References

  1. I. Friedman, Geochim. Cosmochim. Acta, 4, 89 (1953). https://doi.org/10.1016/0016-7037(53)90066-0
  2. S. Kaufman and W. F. Libby, Phys. Rev., 93, 1337 (1954). https://doi.org/10.1103/PhysRev.93.1337
  3. R. Muhammad, S. Kim, J. Park, M. Jung, M. E. Lee, J. Chung, H. Jang and H. Oh, Mater. Chem. Front., 5, 8018 (2021). https://doi.org/10.1039/D1QM00894C
  4. H. K. Rae, Acs. Sym. Ser., 68, 1 (1978).
  5. J. Y. Kim, H. Oh and H. R. Moon, Adv. Mater., 31, 1805293 (2019). https://doi.org/10.1002/adma.201805293
  6. H. Chen and D. S. Sholl, Langmuir, 23, 6431 (2007). https://doi.org/10.1021/la700351c
  7. D. P. Broom and M. Hirscher, Energy Environ. Sci., 9, 3368 (2016). https://doi.org/10.1039/C6EE01435F
  8. J. J. M. Beenakker, V. D. Borman and S. Y. Krylov, Chem. Phys. Lett., 232, 379 (1995). https://doi.org/10.1016/0009-2614(94)01372-3
  9. H. Oh and M. Hirscher, Eur. J. Inorg. Chem., 2016, 4278 (2016). https://doi.org/10.1002/ejic.201600253
  10. H. Oh, K. S. Park, S. B. Kalidindi, R. A. Fischer and M. Hirscher, J. Mater. Chem. A, 1, 3244 (2013). https://doi.org/10.1039/c3ta01544k
  11. M. S. P. Silva, M. A. Moreira, A. F. P. Ferreira, J. C. Santos, V. M. T. M. Silva, P. S. Gomes, M. Minceva, J. P. B. Mota and A. E. Rodrigues, Chem. Eng. Technol., 35, 1777 (2012). https://doi.org/10.1002/ceat.201100672
  12. H. C. Thomas, J. Am. Chem. Soc., 66, 1664 (1944). https://doi.org/10.1021/ja01238a017
  13. Y. H. Yoon, J. H. Nelson, J. Lara, C. Kamel and D. Fregeau, Am. Ind. Hyg. Assoc. J., 53, 493 (1992). https://doi.org/10.1080/15298669291360021
  14. G. S. Bohart and E. Q. Adams, J. Am. Chem. Soc., 42, 523 (1920). https://doi.org/10.1021/ja01448a018
  15. J. Cruz-Olivares, C. Perez-Alonso, C. Barrera-Diaz, F. Urena-Nunez, M. C. Chaparro-Mercado and B. Bilyeu, Chem. Eng. J., 228, 21 (2013). https://doi.org/10.1016/j.cej.2013.04.101
  16. S. A. FitzGerald, D. Mukasa, K. H. Rigdon, N. Zhang and B. R. Barnett, J. Phys. Chem. C, 123, 30427 (2019). https://doi.org/10.1021/acs.jpcc.9b09332
  17. S. Niimura, T. Fujimori, D. Minami, Y. Hattori, L. Abrams, D. Corbin, K. Hata and K. Kaneko, J. Am. Chem. Soc., 134, 18483 (2012). https://doi.org/10.1021/ja305809u
  18. X.-Z. Chu, Z.-P. Cheng, Y.-J. Zhao, J.-M. Xu, M.-S. Li, L. Zhou and C.-H. Lee, Sep. Purif. Technol., 146, 168 (2015). https://doi.org/10.1016/j.seppur.2015.03.036