Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.8.465

Research Trend of Crystalline Porous Materials for Hydrogen Isotope Separation via Kinetic Quantum Sieving  

Lee, Seulji (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University)
Oh, Hyunchul (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University)
Publication Information
Korean Journal of Materials Research / v.31, no.8, 2021 , pp. 465-470 More about this Journal
Abstract
Deuterium is a crucial clean energy source required for nuclear fusion and is a future resource needed in various industries and scientific fields. However, it is not easy to enrich deuterium because the proportion of deuterium in the hydrogen mixture is scarce, at approximately 0.016 %. Furthermore, the physical and chemical properties of the hydrogen mixture and deuterium are very similar. Therefore, the efficient separation of deuterium from hydrogen mixtures is often a significant challenge when using modern separation technologies. Recently, to effectively separate deuterium, studies utilizing the 'Kinetic Quantum Sieving Effect (KQS)' of porous materials are increasing. Therefore, in this review, two different strategies have been discussed for improving KQS efficiency for hydrogen isotope separation performance using nanoporous materials. One is the gating effect, which precisely controls the aperture locally by adjusting the temperature and pressure. The second is the breathing phenomenon, utilizing the volume change of the structure from closed system to open system. It has been reported that efficient hydrogen isotope separation is possible using these two methods, and each of these effects is described in detail in this review. In addition, a specific-isotope responsive system (e.g., 2nd breathing effect in MIL-53) has recently been discovered and is described here as well.
Keywords
hydrogen; deuterium; isotope separation; nanoporous materials; kinetic quantum sieving;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Galewsky, H. C. Steen-Larsen, R. D. Field, J. Worden, C. Risi and M. Schneider, Geophys. Res. Lett., 54, 809 (2016).
2 E. Bertel and G. Stevens, Proceedings of the 11th Pacific Basin Nuclear Conference, 739-747, 11, Canada (1998).
3 H. Oh and M. Hirscher, Eur. J. Inorg. Chem., 2016, 4278 (2016).   DOI
4 J. Beenakker, V. Borman and S. Y. Krylov, Chem. Phys. Lett., 232, 379 (1995).   DOI
5 T. Nguyen, H. Jobic and S. Bhatia, Phys. Rev. Lett., 105, 085901 (2010).   DOI
6 J. Y. Kim, H. Oh and H. R. Moon, Adv. Mater., 31, 1805293 (2019).   DOI
7 S. L. James, Chem. Soc. Rev., 32, 276 (2003).   DOI
8 A. K. Cheetham, C. Rao and R. K. Feller, Chem. Comm., 2006, 4780 (2006).   DOI
9 H. Oh, K. S. Park, S. B. Kalidindi, R. A. Fischer and M. Hirscher, J. Mater. Chem. A, 1, 3244 (2013).   DOI
10 J. Teufel, H. Oh, M. Hirscher, M. Wahiduzzaman, L. Zhechkov, A. Kuc, T. Heine, D. Denysenko and D. Volkmer, Adv. Mater., 25, 635 (2013).   DOI
11 H. Oh, S. B. Kalidindi, Y. Um, S. Bureekaew, R. Schmid, R. A. Fischer and M. Hirscher, Angew. Chem. Int. Ed., 52, 13219 (2013).   DOI
12 L. Zhang, S. Jee, J. Park, M. Jung, D. Wallacher, A. Franz, W. Lee, M. Yoon, K. Choi and M. Hirscher, J. Am. Chem. Soc., 141, 19850 (2019).   DOI
13 J. Y. Kim, L. Zhang, R. Balderas-Xicohtencatl, J. Park, M. Hirscher, H. R. Moon and H. Oh, J. Am. Chem. Soc., 139, 17743 (2017).   DOI
14 R. Muhammad, S. Jee, M. Jung, J. Park, S. G. Kang, K. M. Choi and H. Oh, J. Am. Chem. Soc, 143, 8232 (2021).   DOI
15 M. Jung, J. Park, R. Muhammad, J. Y. Kim, V. Grzimek, M. Russina, H. R. Moon, J. T. Park and H. Oh, Adv. Mater., 33, 2007412 (2021).   DOI
16 J. Y. Kim, J. Park, J. Ha, M. Jung, D. Wallacher, A. Franz, R. Balderas-Xicohtencatl, M. Hirscher, S. G. Kang and J. T. Park, J. Am. Chem. Soc., 142, 13278 (2020).   DOI