DOI QR코드

DOI QR Code

Hydrogen Separation and Production using Proton-Conducting Ceramic Membrane Catalytic Reactors

프로톤 전도성 세라믹 멤브레인 촉매 반응기를 이용한 수소 분리 및 제조 기술

  • Seo, Minhye (Plant Engineering Division, Institute for Advanced Engineering) ;
  • Park, Eun Duck (Department of Energy Systems Research, Ajou University)
  • 서민혜 (고등기술연구원 플랜트엔지니어링센터) ;
  • 박은덕 (아주대학교 에너지시스템학부)
  • Received : 2019.05.28
  • Accepted : 2019.07.01
  • Published : 2019.10.01

Abstract

Proton-conducting perovskite ceramic materials are highly promising for solid electrolytes as well as catalysts at high temperatures. Therefore, they possess an outstanding potential for the membrane reactor in which both reaction and separation occur at a same time. Especially, in the case of hydrogen production catalyst, hydrogen separation, and the membrane reactor coupled with catalyst and separation, extensive results have been reported on the effect of the dopant in the solid electrolytes, temperature, and composition of reactants on the performance. In this review, the recent research trend on the application of proton-conducting ceramic materials to hydrogen production catalyst, hydrogen separation, and membrane reactor is surveyed. Moreover, the potential application and prospect of these materials to the next-generation hydrogen production and separation is discussed.

프로톤 전도성 세라믹인 페로브스카이트 구조의 산화물은 고온 환경에서 고체 전해질 및 촉매로써 동시에 활용이 가능하여, 반응과 분리기능을 동시에 갖춘 멤브레인 반응기로 적용하기에 우수한 소재이다. 특히 수소 제조 촉매와 분리, 이를 결합한 멤브레인 반응기 개발에 관한 연구는 전해질 내 도핑 금속의 종류 및 온도, 반응물의 조성 등에 따라 다양한 연구 결과가 제시되고 있다. 이에 본 총설에서는 프로톤 전도성 세라믹반응기에서 메탄을 활용하여 수소 제조촉매와 멤브레인 반응기로 응용해 온 연구 동향을 살펴보고, 차세대 수소의 제조와 분리 기술로서의 응용분야 및 전망에 관해 고찰하고자 한다.

Keywords

References

  1. Bockris, J. O. M., "The Hydrogen Economy: Its History," Int. J. Hydrogen Energy, 38(6), 2579-2588(2013). https://doi.org/10.1016/j.ijhydene.2012.12.026
  2. Kalinci, Y., Hepbasli, A. and Dincer, I., "Techno-econimic Analysis of a Stand-alone Hybrid Renewable Energy System with Hydrogen Production and Storage Options," Int. J. Hydrogen Energy, 40(24), 7652-7664(2015). https://doi.org/10.1016/j.ijhydene.2014.10.147
  3. A-Mufachi, N. A., Rees, N. V. and S-Wilkens, R., "Hydrogen Selective Membranes: A Review of Palladuim-based Dense Metal Membranes," Renew. Sustain. Energy Rev., 47, 540-551(2015). https://doi.org/10.1016/j.rser.2015.03.026
  4. Li, P., Wang, Z., Qiao, Z., Liu, Y., Cao, X., Li, W., Wang, J. and Wang, S., "Recent Development in Membranes for Efficient Hydrogen Purification," J. Membr. Sci., 495, 130-168(2015). https://doi.org/10.1016/j.memsci.2015.08.010
  5. Uemiya, S., Sato, N., Ando, H., Matsuda, T. and Kikuchi, E., "Steam Reforming of Methane in a Hydrogen-permeable Membrane Reactor," Appl. Catal., 67(1), 223-230(1990). https://doi.org/10.1016/S0166-9834(00)84445-0
  6. Hashim, S. S., Somalu, M. R., Loh, K. S., Liu, S., Zhou, W. and Sunarso, J., "Perovskite-based Proton Conducting Membranes for Hydrogen Separation: A Review," Int. J. Hydrogen Energy, 43(32), 15281-15305(2018). https://doi.org/10.1016/j.ijhydene.2018.06.045
  7. Lukyanov, B. N., Andreev, D. V. and Parmon, V. N., "Catalytic Reactors with Hydrogen Membrane Separation," Chem. Eng. J., 154(1-3), 258-266(2009). https://doi.org/10.1016/j.cej.2009.04.023
  8. Hamid, M. R. A. and Jeong, H., "Recent Advances on Mixed-matrix Membranes for Gas Separation: Oppertunities and Engineering Challenges," Korean J. Chem. Eng., 35(8), 1599-1600(2018).
  9. Adhikari, S. and Fernando, S., "Hydrogen Membrane Separation Techniques," Ind. Eng. Chem. Res., 45(3), 875-881(2006). https://doi.org/10.1021/ie050644l
  10. Kamakoti, P., Morreale, B. D., Ciocco, M. V., Howard, B. H., Killmeyer, R. P., Cugini, A. V. and Sholl, D. S., "Prediction of Hydrogen Flux Through Sulfur-tolerant Binary Alloy Membranes," Science, 307(5709), 569-573(2005). https://doi.org/10.1126/science.1107041
  11. Gallucci, F., Fernandez, E., Corengia, P. and van Sint Annaland, M., "Recent Advances on Membranes and Membrane Reactors for Hydrogen Production," Chem, Eng. Sci., 92, 40-66(2013). https://doi.org/10.1016/j.ces.2013.01.008
  12. Zhang, K., Sunarso, J., Pham, G. H., Wang, S. and Liu, S., "External Short Circuit-assisted Proton Conducting Ceramic Membrane for $H_2$ Permeation," Ceram. Int., 40(1), 791-797(2014). https://doi.org/10.1016/j.ceramint.2013.06.069
  13. Norby, T. and Larring, Y., "Mixed Hydrogen Ion-electronic Conductors for Hydrogen Permeable Membranes," Solid State Ionics, 136-137, 139-148(2000). https://doi.org/10.1016/S0167-2738(00)00300-3
  14. Zhao, L., He, B., Ling, Y., Xun, Z., Peng, R., Meng, G. and Liu, X., "Cobalt-free Oxide $Ba_{0.5}Sr_{0.5}Fe_{0.8}Cu_{0.2}O_{3-{\delta}}$ for Proton-conducting Solid Oxide Fuel Cell Cathode," Int. J. Hydrogen Energy, 35(8), 3769-3774(2010). https://doi.org/10.1016/j.ijhydene.2010.01.039
  15. Zuo, C. D., Dorris, S. E., Balachandran, U. and Liu, M. L., "Effect of Zr-doping on the Chemical Stability and Hydrogen Permeation of the Ni-$BaCe_{0.8}Y_{0.2}O_{3-{\alpha}}$ Mixed Protonic-electronic Conductor," Chem. Mater., 18(19), 4647-4650(2006). https://doi.org/10.1021/cm0518224
  16. Fabbri, E., Bi, L., Tanaka, H., Pergolesi, D. and Traversa, E., "Chemically Stable Pr and Y Co?Doped Barium Zirconate Electrolytes with High Proton Conductivity for Intermediate-Temperature Solid Oxide Fuel Cells," Adv. Funct. Mater., 21(1), 158-166(2011). https://doi.org/10.1002/adfm.201001540
  17. Song, J., Meng, B. and Tan, X., "Stability and Electrical Conductivity of $BaCe_{0.85}Tb_{0.05}M_{0.1}O_{3-{\delta}}$ (M = Co, Fe, Y, Zr, Mn) High Temperature Proton Conductors," Ceram. Int., 42(11), 13278-13284 (2016). https://doi.org/10.1016/j.ceramint.2016.05.130
  18. He, B., Zhang, L., Zhang, Y., Dong, D., Xu, J., Ling, Y. and Zhao, L., "New Insight into Highly Active Cathode of Proton Conducting Solid Oxide Fuel Cells by Oxygen Ionic Conductor Modification," J. Power Sources, 287, 170-176(2015). https://doi.org/10.1016/j.jpowsour.2015.04.055
  19. Iguchi, F., Yamane, T., Kato, H. and Yugami, H., "Low-temperature Fabrication of an Anode Supported SOFC with a Proton Conducting Electrolyte Based on Lanthanum Scandate Using a PLD Method," Solid State Ionics, 275, 117-121(2015). https://doi.org/10.1016/j.ssi.2015.03.022
  20. Li, M., Ni, M., Su, F. and Xia, C., "Proton Conducting Intermediate-temperature Solid Oxide Fuel Cells Using New Perovskite Type Cathodes," J. Power Sources, 260, 197-204(2014). https://doi.org/10.1016/j.jpowsour.2014.03.013
  21. Zhu, A., Zhang, G., Wan, T., Shi, T., Wang, H., Wu, M., Wang, C., Huang, S., Guo, Y., Yu, H. and Shao, Z., "Evaluation of $SrSc_{0.175}Nb_{0.025}Co_{0.8}O_{3-{\delta}}$ Perovskite as a Cathode for Proton-conducting Solid Oxide Fuel Cells: The Possibility of In Situ Creating Protonic Conductivity and Electrochemical Performance," Electrochimica Acta, 259, 559-565(2018). https://doi.org/10.1016/j.electacta.2017.11.037
  22. Rahimpour, M. R., Samimi, F., Babapoor, A., Tohidian, T. and Mohebi, S., "Palladium Membranes Applications in Reaction Systems for Hydrogen Separation and Purification: A Review," Chem. Eng. Process, 121, 24-49(2017). https://doi.org/10.1016/j.cep.2017.07.021
  23. Kim, J.-H., "High Purity Hydrogen and Carbon Production by Direct Cracking of Methane Using Mixed Conducting Ceramic Membranes," Master Thesis, Hanyang University, Seoul(2011).
  24. Song, I. H., Park, Y J., Lee, C. R, Choe, J. H., Kim, Y. J. and Kim, H. D., "Current Status of Porous Ceramic Membrane Materials for Hydrogen Separation," Ceramist, 10(6), 40-49(2007).
  25. Wang, H., Wang, X., Meng, B., Tan, X., Loh, K. S., Sunaro, J. and Liu, S., "Provskite-based Mixed Protonic-electronic Conducting Membranes for Hydrogen Separation: Recent Status and Advances," J. Ind. Eng. Chem., 60, 297-306(2018). https://doi.org/10.1016/j.jiec.2017.11.016
  26. Rosensteel, W. A. and Sullivan, N. P., "Fabrication and Hydrogen Permeation through Novel $BaZr_{0.9}Y_{0.1}O_{3-{\delta}}$-Cu Composite Ceramic-metallic Membranes," Int. J. Hydrogen Energy, 42(7), 4216-4223 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.048
  27. Guan, J., Dorris, S. E., Balachandran, U. and Liu, M., "Transport Properties of $BaCe_{0.95}Y_{0.05}O_{3-{\alpha}}$, Mixed Conductors for Hydrogen Separation," Solid State Ionics, 100(1-2), 45-52(1997). https://doi.org/10.1016/S0167-2738(97)00320-2
  28. Liang, K. C., Du, Y. and Nowick, A. S., "Fast High-temperature Proton Transport in Nonstoichiometric Mixed Perovskites," Solid State Ionics, 69(2), 117-120(1994). https://doi.org/10.1016/0167-2738(94)90399-9
  29. Kreuer, K. D., "Proton-conducting Oxides," Annu. Rev. Mater. Res., 33(1), 333-359(2003). https://doi.org/10.1146/annurev.matsci.33.022802.091825
  30. Ranlov, J. and Nielsen, K., "Crystal Structure of the High Temperature Protonic Conductor $SrCeO_3$," J. Mater. Chem., 4(6), 867-868(1994). https://doi.org/10.1039/JM9940400867
  31. Nowick, A. S. and Du, Y., "High-temperature Protonic Conductors with perovskite-related Structures," Solid State Ionics, 77, 137-146(1995). https://doi.org/10.1016/0167-2738(94)00230-P
  32. Matzke, T., Stimming, U., Karmonik, C., Soetrantmo, M., Hempelmann, R. and Guthoff, F., "Quasielastic Thermal Neutron Scattering Experiment on the Proton Conductor $SrCe_{0.95}Yb_{0.05}H_{0.02}O_{2.985}$," Solid State Ionics, 86-88, 621-628(1996). https://doi.org/10.1016/0167-2738(96)00223-8
  33. Chen, Y., Wei, Y., Zhuang, L., Xie, H. and Wang, H., "Effect of Pt Layer on the Hydrogen Permeation Property of $La_{5.5}W_{0.45}Nb_{0.15}Mo_{0.4}O_{11.25-{\delta}}$ Membrane," J. Mem. Sci., 552, 61-67(2018). https://doi.org/10.1016/j.memsci.2018.01.068
  34. Hamakawa, S., Li, L., Li, A. and Iglesia, E., "Synthesis and Hydrogen Permeation Properties of Membranes Based on Dense $SrCe_{0.95}Yb_{0.05}O_{3-{\alpha}}$ Thin Films," Solid State Ionics, 148(1-2), 71-81(2002). https://doi.org/10.1016/S0167-2738(02)00047-4
  35. Zhan, S., Zhu, X., Ji, B., Wang, W., Zhang, X., Wang, J., Yang, W. and Lin, L., "Preparation and Hydrogen Permeation of $SrCe_{0.95}Y_{0.05}O_{3-{\delta}}$ Asymmetrical Membranes," J. Mem. Sci., 340(1-2), 241-248(2009). https://doi.org/10.1016/j.memsci.2009.05.037
  36. Wei, Y., Xue, J., Wang, H. and Caro, J., "Hydrogen Permeability and Stability of $BaCe_{0.85}Tb_{0.05}Zr_{0.1}O_{3-{\delta}}$ Asymmetric Membranes," J. Mem. Sci., 488, 173-181(2015). https://doi.org/10.1016/j.memsci.2015.04.035
  37. Liu, M., Sun, W., Li, X., Feng, S., Ding, D., Chen, D., Liu, M. and Park, H. C., "High-performance Ni-$BaZr_{0.1}Ce_{0.7}Y_{0.1}Yb_{0.1}O_{3-{\delta}}$ (BZCYYb) Membranes for Hydrogen Separation," Int. J. Hydrogen Energy, 38(34), 14743-14749(2013). https://doi.org/10.1016/j.ijhydene.2013.09.057
  38. Zhu, Z., Yan, L., Liu, H., Sun, W., Zhang, Q. and Liu, W., "A Mixed Electronic and Protonic Conducting Hydrogen Separation Membrane with Asymmetric Structure," Int. J. Hydrogen Energy, 37(17), 12708-12713(2012). https://doi.org/10.1016/j.ijhydene.2012.06.033
  39. Shang, Y., Wei, L., Meng, X., Meng, B., Yang, N., Sunarso, J. and Liu, S., "$CO_2$-enhanced Hydrogen Permeability of Dual-layered A-site Deficient $Ba_{0.95}Ce_{0.85}Tb_{0.05}Zr_{0.1}O_{3-{\delta}}$-based Hollow Fiber Membrane," J. Mem. Sci., 546, 82-89(2018). https://doi.org/10.1016/j.memsci.2017.10.012
  40. Cao, Y., Chi, B., Pu, J. and Jian, L., "Effect of Pt Catalyst and External Circuit on the Hydrogen Permeation of Mo and Nb co-doped Lanthanum Tungstate," J. Mem. Sci., 533, 336-341(2017). https://doi.org/10.1016/j.memsci.2017.03.008
  41. Song, J., Meng, B., Tan, X. and Liu, S., "Surface-modified Proton Conducting Perovskite Hollow Fibre Membranes by Pd-coating for Enhanced Hydrogen Permeation," Int. J. Hydrogen Energy, 40(18), 6118-6127(2015). https://doi.org/10.1016/j.ijhydene.2015.03.057
  42. Kniep, J. and Lin, Y. S., "Effect of Zirconium Doping on Hydrogen Permeation through Strontium Cerate Membranes," Ind. Eng. Chem. Res., 49(6), 2768-2774(2010). https://doi.org/10.1021/ie9015182
  43. Escolastico, S., Solis, C., Kjoleth, C. and Serra, J. M., "Catalytic Layer Optimization for Hydrogen Permeation Membranes Based on $La_{5.5}WO_{11.25-{\delta}}/La_{0.87}Sr_{0.13}CrO_{3-{\delta}}$ Composites," ACS Appl. Mater. Interfaces, 9(41), 35749-35756(2017). https://doi.org/10.1021/acsami.7b08995
  44. Wei, X., Kniep, J. and Lin, Y. S., "Hydrogen Permeation through Terbium doped Strontium Cerate Membranes Enabled by Presence of Reducing Gas in the Downstream," J. Mem. Sci., 345(1-2), 201-206(2009). https://doi.org/10.1016/j.memsci.2009.08.041
  45. Mather, G. C., Poulidi, D., Thursfield, A., Pascual, M. J. Jurado, J. R. and Metcalfe, I. S., "Hydrogen-permeation Characteristics of a $SrCeO_3$-based Ceramic Separation Membrane: Thermal, Ageing and Surface-modification Effects," Solid State Ionics, 181(3-4), 230-235(2010). https://doi.org/10.1016/j.ssi.2009.03.014
  46. Yuan, W., Xiao, C. and Li, L., "Hydrogen Permeation and Chemical Stability of In-doped $SrCe_{0.95}Tm_{0.05}O_{3-{\delta}}$ Membranes," J. Alloys Compd., 616, 142-147(2014). https://doi.org/10.1016/j.jallcom.2014.07.050
  47. Zhang, H. and Wilhite, B. A., "Electrical Conduction and Hydrogen Permeation Investigation on Iron-doped Barium Zirconate Membrane," J. Mem. Sci., 512, 104-110(2016). https://doi.org/10.1016/j.memsci.2016.04.001
  48. Song, S.-J., Moon, J.-H., Lee, T. H., Dorris, S. E. and Balachandran, U., "Thickness Dependence of Hydrogen Permeability for Ni-$BaCe_{0.8}Y_{0.2}O_{3-{\delta}}$," Solid State Ionics, 179(33-34), 1854-1857(2008). https://doi.org/10.1016/j.ssi.2008.05.012
  49. Kim, H., Kim, B., Lee, J., Ahn, K., Kim, H.-R., Yoon, K. J., Kim, B.-K., Cho, Y. W., Lee, H.-W. and Lee, J.-H., "Microstructural Adjustment of Ni-$BaCe_{0.9}Y_{0.1}O_{3-{\delta}}$ Cermet Membrane for Improved Hydrogen Permeation," Ceram. Int., 40(3), 4117-4126 (2014). https://doi.org/10.1016/j.ceramint.2013.08.066
  50. Fang, S., Brinkman, K. S. and Chem, F., "Hydrogen Permeability and Chemical Stability of Ni-$BaZr_{0.1}Ce_{0.7}Y_{0.1}Yb_{0.1}O_{3-{\delta}}$ Membrane in Concentrated $H_2O$ and $CO_2$," J. Mem. Sci., 467, 85-92(2014). https://doi.org/10.1016/j.memsci.2014.05.008
  51. Song, S.-J., Lee, T. H., Wachsman, E. D., Chen, L., Dorris, S. E. and Balachandran, U., "Defect Structure and Transport Properties of Ni-$SrCeO_{3-{\delta}}$ Cermet for Hydrogen Separation Membrane," J. Electrochem. Soc., 152(11), J125-129(2005). https://doi.org/10.1149/1.2060690
  52. Zhu, Z., Sun, W., Yan, L., Liu, W. and Liu, W., "Synthesis and Hydrogen Permeation of Ni-$Ba(Zr_{0.1}Ce_{0.7}Y_{0.2})O_{3-{\delta}}$ Metal-ceramic Asymmetric Membranes," Int. J. Hydrogen Energy, 36(10), 6337-6342(2011). https://doi.org/10.1016/j.ijhydene.2011.02.029
  53. Wang, T., Wang, H., Meng, X., Meng, B., Tan, X., Sunarso, J. and Liu, S., "Enhanced Hydrogen Permeability and Reverse Water-gas Shift Reaction Activity via Magneli $Ti_4O_7$ Doping into $SrCe_{0.9}Y_{0.1}O_{3-{\delta}}$ Hollow Fiber Membrane," Int. J. Hydrogen Energy, 42(17), 12301-12309(2017). https://doi.org/10.1016/j.ijhydene.2017.03.138
  54. Meng, X., Song, J., Yang, N., Meng, B., Tan, X., Ma, Z.-F. and Li, K., "Ni-$BaCe_{0.95}Tb_{0.05}O_{3-{\delta}}$ Cermet Membranes for Hydrogen Permeation," J. Mem. Sci., 401-402, 300-305(2012). https://doi.org/10.1016/j.memsci.2012.02.017
  55. Wei, Y., Xue, J., Fang, W., Chen, Y., Wang, H. and Caro, J., "Enhanced Stability of Zr-doped $Ba(CeTb)O_{3-{\delta}}$-Ni Cermet Membrane for Hydrogen Separation," Chem. Comm., 51(58), 11619-11621(2015). https://doi.org/10.1039/C5CC03391H
  56. Zhu, Z., Sun, W., Dong, Y., Wang, Z., Shi, Z., Zhang, Q. and Liu, W., "Evaluation of Hydrogen Permeation Properties of NieBa $(Zr_{0.7}Pr_{0.1}Y_{0.2})O_{3-{\delta}}$ Cermet Membranes," Int. J. Hydrogen Energy, 39(22), 11683-11689(2014). https://doi.org/10.1016/j.ijhydene.2014.05.163
  57. Fang, S., Bi, L., Yan, L., Sun, W., Chen, C. and Liu, W., "$CO_2$-Resistant Hydrogen Permeation Membranes Based on Doped Ceria and Nickel," J. Phys. Chem., 114(24), 10986-10991(2010). https://doi.org/10.1021/jp1033799
  58. Yan, L., Sun, W., Bi, L., Fang, S., Tao, Z. and Liu, W., "Effect of Sm-doping on the Hydrogen Permeation of Ni-$La_2Ce_2O_7$ Mixed Protonic-electronic Conductor," Int. J. Hydrogen Energy, 35(10), 4508-4511(2010). https://doi.org/10.1016/j.ijhydene.2010.02.134
  59. Irvine, J. T. S., Neagu, D., Verbraeken, M. C., Chatzichristodoulou, C., Graves, C. and Mogensen, M., "Evolution of the Electrochemical Interface in High-Temperature Fuel Cells and Electrolysers," Nat. Energy, 1(1), 15014-15026(2016). https://doi.org/10.1038/nenergy.2015.14
  60. Hua, B., Li, M., Sun, Y. F., Li, J. H. and Luo, J. L., "Enhancing Perovskite Electrocatalysis of Solid Oxide Cells Through Controlled Exsolution of Nanoparticles," ChemSusChem, 10(17), 3333-3341 (2017). https://doi.org/10.1002/cssc.201700936
  61. Liese, E. A. and Gemmen, R. S., "Performance Comparison of Internal Reforming against External Reforming in a Solid Oxide Fuel Cell, Gas Turbine Hybrid System," J. Eng. Gas Turbines Power, 127(1), 86-90(2005). https://doi.org/10.1115/1.1788689
  62. Caprariis, B., Filippis, P., Palma, V., Petrullo, A., Ricca, A., Ruocco, C. and Scarsella, M., "Rh, Ru and Pt Ternary Perovskites Type Oxides $BaZr_{(1-x)}Me_xO_3$ for Methane Dry Reforming," Appl. Catal. A, 517, 47-55(2016). https://doi.org/10.1016/j.apcata.2016.02.029
  63. Seo, M. H., Kim, S. Y., Kim, Y. D., Park, E. D. and Uhm, S., "Highly Stable Barium Zirconate Supported Nickel Oxide Catalyst for Dry Reforming of Methane: From powders toward shaped catalysts," Int. J. Hydrogen Energy, 43(24), 11355-11362(2018). https://doi.org/10.1016/j.ijhydene.2018.03.181
  64. Dama, S., Ghodke, S. R., Bobade, R., Gurav, H. R. and Chilukuri, S., "Active and Durable Alkaline Earth Metal Substituted Perovskite Catalysts for Dry Reforming of Methane," Appl. Catal. B, 224, 146-158(2018). https://doi.org/10.1016/j.apcatb.2017.10.048
  65. Wan, T., Zhu, A., Guo, Y., Wang, C., Huang, S., Chen, H., Yang, G., Wang, W. and Shao, Z., "Co-generation of Electricity and Syngas on Proton-conducting Solid Oxide Fuel Cell with a Perovskite Layer as a Precursor of a Highly Efficient Reforming Catalyst," J. Power Sources, 348, 9-15(2017). https://doi.org/10.1016/j.jpowsour.2017.02.074
  66. Pino, L., Italiano, C., Vita, A., Lagana, M. and Recupero, V., "$Ce_{0.7}0La_{0.20}Ni_{0.10}O_{2-{\delta}}$ Catalyst for Methane Dry Reforming: Influence of Reduction Temperature on the Catalytic Activity and Stability," Appl. Catal. B, 218, 779-792(2017). https://doi.org/10.1016/j.apcatb.2017.06.080
  67. Hayakawa, T., Suzuki, S., Nakamura, J., Uchijima, T., Hamakawa, S., Suzuki, K., Shishido, T. and Takahira, K., "$CO_2$ Reforming of $CH_4$ over Ni/perovskite Catalysts Prepared by Solid Phase Crystallization Method," Appl. Catal. A, 183(2), 273-285(1999). https://doi.org/10.1016/S0926-860X(99)00071-X
  68. Wei, T., Jia, L., Zheng, H., Chi, B., Pu, J. and Li, J., "$LaMnO_3$-based Perovskite with In-situ Exsolved Ni Nanoparticles: A Highly Active, Performance Stable and Coking Resistant Catalyst for $CO_2$ Dry Reforming of $CH_4$," Appl. Catal. B, 564, 199-207(2018). https://doi.org/10.1016/j.apcata.2018.07.031
  69. Sutthiumporn, K. and Kawi, S., "Promotional Effect of Alkaline Earth over Ni-$La_2O_3$ Catalyst for $CO_2$ Reforming of $CH_4$: Role of Surface Oxygen Species on $H_2$ Production and Carbon Suppression," Int. J. Hydrogen Energy, 36(22), 14435-14446(2011). https://doi.org/10.1016/j.ijhydene.2011.08.022
  70. Bhavani, A. G. and Lee, J. S., "Autothermal $CO_2$ Reforming with Methane over Crystalline $LaMn_{1-x}Ni_xO_3$ Perovskite Catalysts," Int. J. Min. Met. Mater., 3(1), 1-6(2018).
  71. Sutthiumporn, K., Maneerung, T., Kathiraser, Y. and Kawi, S., "$CO_2$ Dry-reforming of Methane over $La_{0.8}Sr_{0.2}Ni_{0.8}M_{0.2}O_3$ Perovskite (M = Bi, Co, Cr, Cu, Fe): Roles of Lattice Oxygen on C-H Activation and Carbon Suppression," Int. J. Hydrogen Energy, 37(15), 11195-11207(2012). https://doi.org/10.1016/j.ijhydene.2012.04.059
  72. Arandiyan, H. R., Peng, Y., Liu, C. and Chang, H., "Effects of Noble Metals Doped on Mesoporous LaAlNi Mixed Oxide Catalyst and Identification of Carbon Deposit for Reforming $CH_4$ with $CO_2$," J. Chem. Technol. Biotechno., 89(3), 372-381(2014). https://doi.org/10.1002/jctb.4127
  73. Valderrama, G., Navarro, U. and Goldwasser, M. R., "$CO_2$ Reforming of $CH_4$ over Co-La-based Perovskite-type Catalyst Precursors," J. Power Sources, 234, 31-37(2013). https://doi.org/10.1016/j.jpowsour.2013.01.142
  74. Yadav, P. K. and Das, T., "Production of Syngas from Carbon Dioxide Reforming of Methane by Using $LaNi_xFe_{1-x}O_3$ Perovskite Type Catalysts," Int. J. Hydrogen Energy, 44(3), 1659-1670(2019). https://doi.org/10.1016/j.ijhydene.2018.11.108
  75. Gomes, R., Costa, D., Junior, R., Santos, M., Rodella, C., Frety, R., Beratta, A. and Brandao, S., "Dry Reforming of Methane over NiLa-Based Catalysts: Influence of Synthesis Method and Ba Addition on Catalytic Properties and Stability," Catalysts, 9(4), 313-326(2019). https://doi.org/10.3390/catal9040313
  76. Hammani, R., Batis, H. and Minot, C., "Combined Experimental and Theoretical Investigation of the $CO_2$ Adsorption on $LaMnO_{3+y}$ Perovskite Oxide," Surf. Sci., 603(20), 3057-3067(2009). https://doi.org/10.1016/j.susc.2009.08.016
  77. Evdou, A., Zaspalis, V. and Nalbandian, L., "$La_{(1-x)}Sr_xMnO_{3-{\delta}}$ Perovskites as Redox Materials for the Production of High Purity Hydrogen," Int. J. Hydrogen Energy, 33(20), 5554-5562(2008). https://doi.org/10.1016/j.ijhydene.2008.06.036
  78. Ponce, S., Pena, M. A. and Fierro, J. L. G., "Surface Properties and Catalytic Performance in Methane Combustion of Sr-substituted Lanthanum Manganites," Appl. Catal. B, 24(3-4), 193-205(2000). https://doi.org/10.1016/S0926-3373(99)00111-3
  79. Jiang, S. P., "Development of Lanthanum Strontium Manganite Perovskite Cathode Materials of Solid Oxide Fuel Cells: A Review," J. Mater. Sci., 43(21), 6799-6833(2008). https://doi.org/10.1007/s10853-008-2966-6
  80. Viparelli, P., Villa, P., Basile, F., Trifiro, F., Vaccari, A., Nanni, P. and Viviani, M., "Catalyst Based on $BaZrO_3$ with Different Elements Incorporated in the Structure II. $BaZr_{(1-x)}Rh_xO_3$ Systems for the Production of Syngas by Partial Oxidation of Methane," Appl. Catal. A, 280(2), 225-232(2005). https://doi.org/10.1016/j.apcata.2004.11.002
  81. Staniforth, J., Evans, S. E., Good, O. J., Darton, R. J. and Ormerod, R. M., "A Novel Perovskite Based Catalyst with High Selectivity and Activity for Partial Oxidation of Methane for Fuel Cell Applications," Dalton Trans., 43(40), 15022-15027(2014). https://doi.org/10.1039/C4DT01288G
  82. Yoon, J. S., Lim, Y.-S., Choi, B. H. and Hwang, H. J., "Catalytic Activity of Perovskite-type Doped $La_{0.08}Sr_{0.92}Ti_{1-x}M_xO_{3-{\delta}}$ (M=Mn, Fe, and Co) Oxides for Methane Oxidation," Int. J. Hydrogen Energy, 39(15), 7955-7962(2014). https://doi.org/10.1016/j.ijhydene.2014.03.008
  83. Morales, M., Espiell, F. and Segarra, M., "Performance and Stability of $La_{0.5}Sr_{0.5}CoO_{3-{\delta}}$ Perovskite as Catalyst Precursor for Syngas Production by Partial Oxidation of Methane," Int. J. Hydrogen Energy, 39(12), 6454-6461(2014). https://doi.org/10.1016/j.ijhydene.2014.02.060
  84. Wang, Y., Liao, Q., Zhou, L. and Wang, H., "Oxygen Permeability and Structure Stability of a Novel Cobalt-free Perovskite $Gd_{0.33}Ba_{0.67}FeO_{3-{\delta}}$," J. Membr. Sci., 457, 82-87(2014). https://doi.org/10.1016/j.memsci.2014.01.046
  85. Meng, B., Zhang, H., Qin, J., Tan, X., Ran, R. and Liu, S., "The Catalytic Effects of $La_{0.3}Sr_{0.7}Fe_{0.7}Cu_{0.2}Mo_{0.1}O_3$ Perovskite and Its Hollow Fibre Membrane for Air Separation and Methane Conversion Reactions," Sep. Purif. Technol., 147, 406-413(2015). https://doi.org/10.1016/j.seppur.2015.01.039
  86. Zhu, D. C., Xu, X. Y., Feng, S. J., Liu, W. and Chen, C. S., "$La_2NiO_4$ Tubular Membrane Reactor for Conversion of Methane to Syngas," Catal. Today, 82(1-4), 151-156(2003). https://doi.org/10.1016/S0920-5861(03)00224-4
  87. Kyriakou, V., Garagounis, I., Vourros, A., Vasileiou, E., Manerbino, A., Coors, W. G., and Stoukides, M., "Methane Steam Reforming at Low Temperatures in a $BaZr_{0.7}Ce_{0.2}Y_{0.1}O_{2.9}$ Proton Conducting Membrane Reactor," Appl. Catal. B, 186, 1-9(2016). https://doi.org/10.1016/j.apcatb.2015.12.039
  88. Morales, M. and Segarra, M., "Steam Reforming and Oxidative Steam Reforming of Ethanol over $La_{0.6}Sr_{0.4}CoO_{3-{\delta}}$ Perovskite as Catalyst Precursor for Hydrogen Production," Appl. Catal. A, 502, 305-311(2015). https://doi.org/10.1016/j.apcata.2015.05.036
  89. Chen, S. Q., Li, Y. D., Liu, Y. and Bai, X., "Regenerable and Durable Catalyst for Hydrogen Production from Ethanol Steam Reforming," Int. J. Hydrogen Energy, 36(10), 5849-5856(2011). https://doi.org/10.1016/j.ijhydene.2011.01.126
  90. Zhao, L., Wei, Y., Huang, Y. and Liu, Y., "$La_{1-x}K_xFe_{0.7}Ni_{0.3}O_3$ Catalyst for Ethanol Steam Reforming-The Effect of K-doping," Catal. Today, 259(2), 430-437(2016). https://doi.org/10.1016/j.cattod.2015.04.013
  91. Liu, F., Qu, Y., Yue, Y., Liu, G. and Liu, Y., "Nano Bimetallic Alloy of Ni-Co Obtained from $LaCo_xNi_{1-x}O_3$ and Its Catalytic Performance for Steam Reforming of Ethanol," RSC Adv., 5(22), 16837-16846(2015). https://doi.org/10.1039/C4RA14131H
  92. Wang, Z., Wang, C., Chen, S. and Liu, Y., "Co-Ni Bimetal Catalyst Supported on Perovskite Type Oxide for Steam Reforming of Ethanol to Produce Hydrogen," Int. J. Hydrogen Energy, 39(11), 5644-5652(2014). https://doi.org/10.1016/j.ijhydene.2014.01.151
  93. Fabbri, E., Bi, L., Pergolesi, D. and Traversa, E., "Towards the Next Generation of Solid Oxide Fuel Cells Operating below $600^{\circ}C$ with Chemically Stable Proton-conducting Electrolytes," Adv. Mater., 24(2), 195-208(2012). https://doi.org/10.1002/adma.201103102
  94. Menon, V., Banerjee, A., Dailly, J. and Deutschmann, O., "Numerical Analysis of Mass and Heat Transport in Proton-conducting SOFCs with Direct Internal Reforming," Appl. Energy, 149, 161-175(2015). https://doi.org/10.1016/j.apenergy.2015.03.037
  95. Arpornwichanop, A. and Patcharavorachot, Y., "Investigation of a Proton-conducting SOFC with Internal Autothermal Reforming of Methane," Chem. Eng. Res. Des., 91(8), 1508-1516(2013). https://doi.org/10.1016/j.cherd.2013.05.008
  96. Arpornwichanop, A., Patcharavorachot, Y. and Assabumrungrat, S., "Analysis of a Proton-conducting SOFC with Direct Internal Reforming," Chem. Eng. Sci., 65(1), 581-589(2010). https://doi.org/10.1016/j.ces.2009.06.066
  97. Ni, M., Leung, D. Y. C. and Leung, M. K. H., "Modeling of Methane Fed Solid Oxide Fuel Cells: Comparison Between Proton Conducting Electrolyte and Oxygen Ion Conducting Electrolyte," J. Power Sources, 183(1), 133-142(2008). https://doi.org/10.1016/j.jpowsour.2008.04.073
  98. Bi, L., Shafi, S. P. and Traversa, E., "Y-doped $BaZrO_3$ as a Chemically Stable Electrolyte for Proton-conducting Solid Oxide Electrolysis cells (SOECs)," J. Mater. Chem. A, 3(11), 5815-5819(2015). https://doi.org/10.1039/C4TA07202B
  99. Bi, L., Boulfrad, S. and Traversa, E., "Steam Electrolysis by Solid Oxide Electrolysis Cells (SOECs) with Proton-conducting Oxides," Chem. Soc. Rev., 43(24), 8255-8270(2014). https://doi.org/10.1039/C4CS00194J
  100. Lei, L., Tao, Z., Wang, X., Lemmon, J. P. and Chen, F., "Intermediate-temperature Solid Oxide Electrolysis Cells with Thin Proton-conducting Electrolyte and a Robust Air Electrode," J. Mater. Chem. A, 5(44), 22945-22951(2017). https://doi.org/10.1039/C7TA05841A
  101. Lei, L., Keels, J. M., Tao, Z., Zhang, J. and Chen, F., "Thermodynamic and Experimental Assessment of Proton Conducting Solid Oxide Fuel Cells with Internal Methane Steam Reforming," Appl. Ener., 224(15), 280-288(2018). https://doi.org/10.1016/j.apenergy.2018.04.062
  102. Malerod-Fjeld, H., Clark, D., Yuste-Tirados, I., Zanon, R., Catalian-Martinez, D., Beeaff, D., Morejudo, S. H., Vestre, P. K., Notby, T., Haungsrud, R., Serra, J. M. and Kjolseth, C., "Thermo-electrochemical Production of Compressed Hydrogen from Methane with Near-zero Energy Loss," Nat. Energy, 2(12), 923-931 (2017). https://doi.org/10.1038/s41560-017-0029-4
  103. Li, J., Yoon, H., Oh, T. -K. and Wachsman, E. D., "High Temperature $SrCe_{0.9}Eu_{0.1}O_{3-{\delta}}$ Proton Conducting Membrane Reactor for $H_2$ Production Using the Water-gas Shift Reaction," Appl. Catal. B, 92(3-4), 234-239(2009). https://doi.org/10.1016/j.apcatb.2009.08.015