• Title/Summary/Keyword: hspice

Search Result 388, Processing Time 0.026 seconds

A Fractional-N PLL with Phase Difference-to-Voltage Converter (위상차 전압 변환기를 이용한 Fractional-N 위상고정루프)

  • Lee, Sang-Ki;Choi, Young-Shig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2716-2724
    • /
    • 2012
  • In this paper, a Phase Difference-to-Voltage Converter (PDVC) has been introduced into a conventional fractional-N PLL to suppress fractional spurs. The PDVC controls charge pump current depending on the phase difference of two input signals to phase frequency detector. The charge pump current decreases as the phase difference of two input signals increase. It results in the reduction of fractional spurs in the proposed fractional-N PLL. The proposed fractional-N PLL with PDVC has been designed based on a 1.8V $0.18{\mu}m$ CMOS process and proved by HSPICE simulation.

Phase-Locked Loop with a loop filter consisting of a capacitor and a charge pump functioned as resistor (저항 역할을 하는 전하펌프와 하나의 커패시터로 구성된 루프 필터를 가진 위상고정루프)

  • Park, Jong-Youn;Choi, Hyek-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2495-2502
    • /
    • 2012
  • This paper presents a new structure of phase looked loop (PLL) for replacing a process sensitive resistor in loop filter with an additional charge pump (CP). The additional charge pump works as a resistor in a loop filter. The output of two charge pumps changes same direction according to process variation. The simulation results according to process conditions(SS/TT/FF) demonstrate that the proposed PLL works properly with process variations. It has been designed with a 1.8V $0.18{\mu}m$ CMOS process and proved by simulation with HSPICE.

Design of Low Voltage Linear Tunable Transconductors using the Series Composite Transistor (직렬 복합 트랜지스터를 이용한 저전압 가변 트랜스컨덕터의 설계)

  • Yun, Chang-Hun;Yu, Young-Gyu;Choi, Seok-Woo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.5
    • /
    • pp.52-58
    • /
    • 2001
  • In this paper, the low voltage linear tunable transconductors using the series composite transistor are presented. Due to the series composite transistor operating in the saturation region and the triode region, the proposed circuits have wide input range at low supply voltage. The designed transconductors have been simulated by HSPICE using $0.25{\mu}m$ n-welll CMOS process. Simulation results show that the cutoff frequency is 309M Hz and the THD of less than 1.1% can be obtained for the differential input signal of up to l.5VP-P with the input signal frequency of l0MHz.

  • PDF

Design of a Low-Power Multiplier Using MOS Current Mode Logic Circuit (MOS 전류모드 논리회로를 이용한 저 전력 곱셈기 설계)

  • Lee, Yoon-Sang;Kim, Jeong-Beom
    • Journal of IKEEE
    • /
    • v.11 no.2
    • /
    • pp.83-88
    • /
    • 2007
  • This paper proposes an 8${\times}$8 bit parallel multiplier using MOS current-mode logic (MCML) circuit for low power consumption. The 8${\times}$8 multiplier is designed with proposed MCML full adders and conventional full adders. The designed multiplier is achieved to reduce the power consumption by 9.4% and the power-delay-product by 11.7% compared with the conventional circuit. This circuit is designed with Samsung 0.35${\mu}m$ standard CMOS process. The validity and effectiveness are verified through the HSPICE simulation.

  • PDF

A NOR-type High-Speed Dual-Modulus Prescaler (NOR 형태의 고속 dual-modulus 프리스케일러)

  • Seong, Gi-Hyeok;Kim, Lee-Seop
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.2
    • /
    • pp.69-76
    • /
    • 2000
  • A dual-modulus prescaler divides the input signal by one of the moduli according to the control signal. In this paper, a new fast dual-modulus prescaler is proposed. The proposed prescaler has a ratioed-NOR structure different from a conventional ratioed-NAND structure. The proposed one can operate at a higher speed by using parallely connected NMOSs instead of using series-connected ones. HSPICE simulation results using HYUNDAI 0.65(m 2-poly 2-metal CMOS process parameters show that the maximum operating frequency of the proposed dual-modulus prescaler is 2.8㎓ with power consumption of 40.7㎽ at 5V supply voltage at $25^{\circ}C$. The proposed dual-modulus prescaler can be utilized for the frequency-synthesis in cellular radio front-ends.

  • PDF

Design of Temperature Stable Signal Conversion Circuit (동작온도에 무관한 신호변환회로의 설계)

  • Choi, Jin-Ho;Kim, Soo-Hwan;Lim, In-Taek;Choi, Jin-Oh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.671-672
    • /
    • 2011
  • Time to digital converter is designed. To obtain the digital signal from time information the analog delay element is used. Because the analog delay element shows more stable characteristics compared to the digital delay element in view point of process variation. The designed circuit has temperature stale characteristics when the range of operating temperature is from $-20^{\circ}C$ to $70^{\circ}C$. The circuit is simulated and confirmed by HSPICE.

  • PDF

Design of a Low-Power CVSL Full Adder Using Low-Swing Technique (Low-Swing 기술을 이용한 저 전력 CVSL 전가산기 설계)

  • Kang Jang Hee;Kim Jeong Beom
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.2 s.332
    • /
    • pp.41-48
    • /
    • 2005
  • In this paper, we propose a new Low-Swing CVSL full adder for low power consumption. An $8\times8$ parallel multiplier is used for the comparison between the proposed Low-Swing CVSL full adder with conventional CVSL full adder. Comparing the previous works, this circuit is reduced the power consumption rate of $13.1\%$ and the power-delay-product of $14.3\%$. The validity and effectiveness of the proposes circuits are verified through the HSPICE under Hynix $0.35{\mu}m$ standard CMOS process.

A Novel CMOS Rail-to-Rail Input Stage Circuit with Improved Transconductance (트랜스컨덕턴스 특성을 개선한 새로운 CMOS Rail-to-Rail 입력단 회로)

  • 권오준;곽계달
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.12
    • /
    • pp.59-65
    • /
    • 1998
  • In this paper, a novel rail-to-rail input stage circuit with improved transconductance Is designed. Its excellent performances over whole common-mode input voltage Vcm range is demonstrated by circuit simulator HSPICE. The novel input stage circuit comprises additional 4 input transistors and 4 current sources/sinks. It maintains DC currents of signal amplifying transistors when one of the differential input stage circuits operates, but it reduces these currents to 1/4 when both differential input stage circuits operates, As a result, a operational amplifier with the novel circuit maintains nearly constant transconductance performance and unity-gain frequency in strong inversion region. The novel circuit allows an optimal frequency compensation and uniform operational amplifier performance over whole Vcm range.

  • PDF

Extraction of Passive Device Model Parameters Using Genetic Algorithms

  • Yun, Il-Gu;Carastro, Lawrence A.;Poddar, Ravi;Brooke, Martin A.;May, Gary S.;Hyun, Kyung-Sook;Pyun, Kwang-Eui
    • ETRI Journal
    • /
    • v.22 no.1
    • /
    • pp.38-46
    • /
    • 2000
  • The extraction of model parameters for embedded passive components is crucial for designing and characterizing the performance of multichip module (MCM) substrates. In this paper, a method for optimizing the extraction of these parameters using genetic algorithms is presented. The results of this method are compared with optimization using the Levenberg-Marquardt (LM) algorithm used in the HSPICE circuit modeling tool. A set of integrated resistor structures are fabricated, and their scattering parameters are measured for a range of frequencies from 45 MHz to 5 GHz. Optimal equivalent circuit models for these structures are derived from the s-parameter measurements using each algorithm. Predicted s-parameters for the optimized equivalent circuit are then obtained from HSPICE. The difference between the measured and predicted s-parameters in the frequency range of interest is used as a measure of the accuracy of the two optimization algorithms. It is determined that the LM method is extremely dependent upon the initial starting point of the parameter search and is thus prone to become trapped in local minima. This drawback is alleviated and the accuracy of the parameter values obtained is improved using genetic algorithms.

  • PDF

SOP Package Modeling for RFIC (SOP RFIC 패키지 모델링)

  • 이동훈;어영선
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.11
    • /
    • pp.18-28
    • /
    • 1999
  • A new equivalent circuit model of package (SOP, Small Outline Package) is presented for designing radio frequency integrated circuits (RFIC). In the RF region, the paddle of a package does not work as an ideal ground. Further parasitics due to both coupling and loss have a substantial effect on MMIC. The equivalent circuit model and parameter extraction methodology for the electrical characteristics of the package are described by illustrating the SOP type packages. The accuracy of the model is evaluated by comparing the s-parameters of the commercial full-wave solver and those of HSPICE simulation with the circuit model. The proposed model shows an excellent agreement with full-wave analysis up to about 8GHz.

  • PDF