• Title/Summary/Keyword: homogeneous space

Search Result 373, Processing Time 0.026 seconds

ON MAXIMAL OPERATORS BELONGING TO THE MUCKENHOUPT'S CLASS $A_1$

  • Suh, Choon-Serk
    • East Asian mathematical journal
    • /
    • v.23 no.1
    • /
    • pp.37-43
    • /
    • 2007
  • We study a maximal operator defined on spaces of homogeneous type, and we prove that this operator is of weak type (1,1). As a consequence we show that the maximal operator belongs to the Muckenhoupt's class $A_1$.

  • PDF

SEMI-INVARIANT MINIMAL SUBMANIFOLDS OF CONDIMENSION 3 IN A COMPLEX SPACE FORM

  • Lee, Seong-Cheol;Han, Seung-Gook;Ki, U-Hang
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.4
    • /
    • pp.649-668
    • /
    • 2000
  • In this paper we prove the following : Let M be a real (2n-1)-dimensional compact minimal semi-invariant submanifold in a complex projective space P(sub)n+1C. If the scalar curvature $\geq$2(n-1)(2n+1), then m is a homogeneous type $A_1$ or $A_2$. Next suppose that the third fundamental form n satisfies dn = 2$\theta\omega$ for a certain scalar $\theta$$\neq$c/2 and $\theta$$\neq$c/4 (4n-1)/(2n-1), where $\omega$(X,Y) = g(X,øY) for any vectors X and Y on a semi-invariant submanifold of codimension 3 in a complex space form M(sub)n+1 (c). Then we prove that M has constant principal curvatures corresponding the shape operator in the direction of the distingusihed normal and the structure vector ξ is an eigenvector of A if and only if M is locally congruent to a homogeneous minimal real hypersurface of M(sub)n (c).

  • PDF

REAL HYPERSURFACE OF A COMPLEX PROJECTIVE SPACE

  • Lee, O.;Shin, D.W.
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.725-736
    • /
    • 1999
  • In the present paper we will give a characterization of homogeneous real hypersurfaces of type A1, A2 and B of a complex projective space.

  • PDF

PLANK PROBLEMS, POLARIZATION AND CHEBYSHEV CONSTANTS

  • Revesz, Szilard-Gy.;Sarantopoulos, Yannis
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.157-174
    • /
    • 2004
  • In this work we discuss "plank problems" for complex Banach spaces and in particular for the classical $L^{p}(\mu)$ spaces. In the case $1\;{\leq}\;p\;{\leq}\;2$ we obtain optimal results and for finite dimensional complex Banach spaces, in a special case, we have improved an early result by K. Ball [3]. By using these results, in some cases we are able to find best possible lower bounds for the norms of homogeneous polynomials which are products of linear forms. In particular, we give an estimate in the case of a real Hilbert space which seems to be a difficult problem. We have also obtained some results on the so-called n-th (linear) polarization constant of a Banach space which is an isometric property of the space. Finally, known polynomial inequalities have been derived as simple consequences of various results related to plank problems.

Characterizations of some real hypersurfaces in a complex space form in terms of lie derivative

  • Ki, U-Hang;Suh, Young-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.161-170
    • /
    • 1995
  • A complex $n(\geq 2)$-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_n(c)$. A complete and simply connected complex space form is a complex projective space $P_nC$, a complex Euclidean space $C^n$ or a complex hyperbolic space $H_nC$, according as c > 0, c = 0 or c < 0. Takagi [12] and Berndt [2] classified all homogeneous real hypersufaces of $P_nC$ and $H_nC$.

  • PDF

AFFINE YANG-MILLS CONNECTIONS ON NORMAL HOMOGENEOUS SPACES

  • Park, Joon-Sik
    • Honam Mathematical Journal
    • /
    • v.33 no.4
    • /
    • pp.557-573
    • /
    • 2011
  • Let G be a compact and connected semisimple Lie group, H a closed subgroup, g (resp. h) the Lie algebra of G (resp. H), B the Killing form of g, g the normal metric on the homogeneous space G/H which is induced by -B. Let D be an invarint connection with Weyl structure (D, g, ${\omega}$) in the tangent bundle over the normal homogeneous Riemannian manifold (G/H, g) which is projectively flat. Then, the affine connection D on (G/H, g) is a Yang-Mills connection if and only if D is the Levi-Civita connection on (G/H, g).

Study of viscoelastic model for harmonic waves in non-homogeneous viscoelastic filaments

  • Kakar, Rajneesh;Kaur, Kanwaljeet;Gupta, Kishan Chand
    • Interaction and multiscale mechanics
    • /
    • v.6 no.1
    • /
    • pp.31-50
    • /
    • 2013
  • A five parameter viscoelastic model is developed to study harmonic waves propagating in the non-homogeneous viscoelastic filaments of varying density. The constitutive relation for five parameter model is first developed and then it is applied for harmonic waves in the specimen. In this study, it is assumed that density, rigidity and viscosity of the specimen i.e., rod are space dependent. The specimen is non-homogeneous, initially unstressed and at rest. The method of non-linear partial differential equation has been used for finding the dispersion equation of harmonic waves in the rods. A simple method is presented for reflections at the free end of the finite non-homogeneous viscoelastic rods. The harmonic wave propagation in viscoelastic rod is also presented numerically with MATLAB.