Browse > Article
http://dx.doi.org/10.12989/imm.2013.6.1.031

Study of viscoelastic model for harmonic waves in non-homogeneous viscoelastic filaments  

Kakar, Rajneesh (DIPS Polytechnic College)
Kaur, Kanwaljeet (Applied Sciences, BMSCE)
Gupta, Kishan Chand (Applied Sciences, BMSCE)
Publication Information
Interaction and multiscale mechanics / v.6, no.1, 2013 , pp. 31-50 More about this Journal
Abstract
A five parameter viscoelastic model is developed to study harmonic waves propagating in the non-homogeneous viscoelastic filaments of varying density. The constitutive relation for five parameter model is first developed and then it is applied for harmonic waves in the specimen. In this study, it is assumed that density, rigidity and viscosity of the specimen i.e., rod are space dependent. The specimen is non-homogeneous, initially unstressed and at rest. The method of non-linear partial differential equation has been used for finding the dispersion equation of harmonic waves in the rods. A simple method is presented for reflections at the free end of the finite non-homogeneous viscoelastic rods. The harmonic wave propagation in viscoelastic rod is also presented numerically with MATLAB.
Keywords
harmonic waves; viscoelastic media; friedlander series; inhomogeneous; varying density;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lei, Y., Lee, J.D. and Zeng, X. (2008), "Response of a rocksalt crystal to electromagnetic wave modeled by a multiscale field theory", Interact. Multiscale Mech., 1(4), 467-476.   DOI   ScienceOn
2 Mirsky, I. (1965), "Wave propagation in transversely isotropic circular cylinders part I: Theory", J. Acoust. Soc. Am., 37(6), 1016-1026.   DOI
3 Murayama, S. and Shibata, T. (1961), "Rheological properties of clays", 5th International Conference of Soil Mechanics and Foundation Engineering , Paris, 1, 269- 273.
4 Moodie, T.B. (1973), "On the propagation, reflection and transmission of transient cylindrical shear waves in non-homogeneous four-parameter viscoelastic media", B. Aust. Math. Soc., 8, 397-411.   DOI
5 Ponnusamy, P. and Selvamani, R. (2012), "Wave propagation in a generalized thermo elastic plate embedded in elastic medium", Interact. Multiscale Mech., 5(1), 13-26.   DOI   ScienceOn
6 Schiffman, R.L. Ladd, C.C. and Chen, A.T.F. (1964), "The secondary consolidation of clay, rheology and soil mechanics", Proceedings of the International Union of Theoretical and Applied Mechanics Symposium, Grenoble, Berlin, 273-303.
7 Tsai, Y.M. (1991), "Longitudinal motion of a thick transversely isotropic hollow cylinder", J. Press. Vessel Technol., 113, 585-589.   DOI
8 White, J.E. and Tongtaow, C. (1981), "Cylindrical waves in transversely isotropic media", J. Acoust. Soc. Am., 70(4), 1147-1155.   DOI   ScienceOn
9 Acharya, D.P., Roy, I. and Biswas, P.K. (2008), "Vibration of an infinite inhomogeneous transversely isotropic viscoelastic medium with a cylindrical hole", Appl. Math. Mech., 29(3), 1-12.   DOI   ScienceOn
10 Achenbach, J.D. and Reddy, D.P. (1967), "Note on the wave-propagation in linear viscoelastic media", ZAMP, 18(1), 141-143.   DOI
11 Alfrey, T. (1944), "Non-homogeneous stress in viscoelastic media", Quart. Appl. Math, 2, 113.   DOI
12 Barberan, J. and Herrera, J. (1966), "Uniqueness theorems and speed of propagation of signals in viscoelastic materials", Arch. Ration. Mech. An., 23(3), 173-190.
13 Batra, R.C. (1998), "Linear constitutive relations in isotropic finite elasticity", J. Elasticity, 51(3), 243-245.   DOI
14 Bert, C.W. and Egle, D.M. (1969), "Wave propagation in a finite length bar with variable area of crosssection", J. Appl. Mech.-ASME, 36, 908-909.
15 Carslaw, H.S. and Jaeger, J.C. (1963), Operational methods in applied math, Second Ed., Dover Publication, New York.
16 Bhattacharya, S. and Sengupta, P.R. (1978), "Disturbances in a general viscoelastic medium due to impulsive forces on a spherical cavity", Gerlands Beitr Geophysik, Leipzig, 87(8), 57-62.
17 Biot, M.A. (1940), "Influence of initial stress on elastic waves", J. Appl. Phys., 11(8), 522-530.   DOI
18 Bland, D.R. (1960), Theory of linear viscoelasticity, Pergamon Press, Oxford.
19 Christensen, R.M. (1971), Theory of viscoelasticity, Academic Press.
20 Friedlander, F.G. (1947), "Simple progressive solutions of the wave equation", Proc. Camb. Phil. Soc., 43(3), 360-373.   DOI
21 Gurdarshan, S. and Avtar, S. (1980), "Propagation, reflection and transmission of longitudinal waves in nonhomogeneous five parameter viscoelastic rods", Indian J. Pure Ap. Mat., 11(9), 1249-1257.
22 Kakar, R., Kaur, K. and Gupta, K.C. (2012), "Analysis of five-parameter viscoelastic model under dynamic loading", J. Acad. Indus. Res., 1(7), 419-426.
23 Kakar, R. and Kaur, K. (2013), "Mathematical analysis of five parameter model on the propagation of cylindrical shear waves in non-homogeneous viscoelastic media", Int. J. Phys. Math. Sci., 4(1), 45-52.
24 Karl, F.C. and Keller, J.B. (1959), "Elastic waves propagation in homogeneous and inhomogeneous mediaz", J. Acoust. Soc. Am., 31(6), 694-705.   DOI
25 Kaur, K., Kakar, R. and Gupta, K.C. (2012), "A dynamic non-linear viscoelastic model", Int. J. Eng. Sci. Technol., 4(12), 4780-4787.
26 Kaur, K., Kakar, R., Kakar, S. and Gupta, K.C. (2013), "Applicability of four parameter viscoelastic model for longitudinal wave propagation in non-homogeneous rods", Int. J. Eng. Sci. Technol., 5(1), 75-90.
27 Kumar, R. and Gupta, R.R. (2010), "Analysis of wave motion in micropolar transversely isotropic thermoelastic half space without energy dissipation", Interact. Multiscale Mech., 3(2), 145-156.   DOI   ScienceOn