SEMI-INVARIANT MINIMAL SUBMANIFOLDS OF CODIMENSION 3 IN A COMPLEX SPACE FORM

SEONG-CHEOL LEE, SEUNG-GOOK HAN, AND U-HANG KI

ABSTRACT. In this paper we prove the following: Let M be a real (2n-1)-dimensional compact minimal semi-invariant submanifold in a complex projective space $P_{n+1}C$. If the scalar curvature $\geq 2(n-1)(2n+1)$, then M is a homogeneous type A_1 or A_2 . Next suppose that the third fundamental form n satisfies $dn=2\theta\omega$ for a certain scalar $\theta \neq \frac{c}{2}$ and $\theta \neq \frac{c}{4}\frac{4n-1}{2n-1}$, where $\omega(X,Y)=g(X,\phi Y)$ for any vectors X and Y on a semi-invariant submanifold of codimension 3 in a complex space form $M_{n+1}(c)$. Then we prove that M has constant principal curvatures corresponding the shape operator in the direction of the distinguished normal and the structure vector ξ is an eigenvector of A if and only if M is locally congruent to a homogeneous minimal real hypersurface of $M_n(c)$.

0. Introduction

A submanifold M is called a CR submanifold of a Kaehlerian manifold \widetilde{M} with complex structure J if it is endowed with a pair of mutually orthogonal and complementary differentiable distribution (T, T^{\perp}) such that for any $x \in M$ we have $JT_x = T_x, J_x^{\perp} \subset T_x^{\perp}M$, where $T_x^{\perp}M$ denotes the normal space of M at x([1]). In particular, M is said to be a semi-invariant submanifold if $\dim T^{\perp} = 1$, and the unit normal in JT^{\perp} is called a distinguished normal to M([24], [27]). In this case, M admits an induced almost contact metric structure (Φ, ξ, g) . A typical example of a semi-invariant submanifold is real hypersurfaces. For the real hypersurface case, when \widetilde{M} is a complex space form, many results are known. For example, we refer to ([3], [5], [6], [8], [11], [15], [18], [19],

Received June 5, 2000. Revised September 25, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 53C15, 53C25, 53C40.

Key words and phrases: semi-invariant minimal submanifold, distinguished normal, homogeneous real hypersurface.

[20], [21], [25] and [26]) for more details and further references. Therefore we may except to generalize some results which are valid in a real hypersurface to a semi-invariant submanifold. From this point of view, a semi-invariant submanifold with higher codimension of a complex space form are investigated by several authors ([16], [23], [24]) in connection with the shape operator and the induced almost contact metric structure. In particular, a semi-invariant submanifold of codimension 3 in a complex space form are studied in ([12], [13], [28]) by using properties of the third fundamental form of M and induced almost contact metric structure.

The main purpose of the present paper is to treat a semi-invariant submanifold of codimension 3 in a complex space form $M_{n+1}(c)$ and give sufficient conditions for the submanifold to be a real hypersurface of $M_n(c)$. The model for this note can be found in [14] by Ki, Song, Takagi.

In §1, we give some preliminaries and derive a series of useful formulas when the ambient space is a Kaehlerian manifold. In §2 we also derive the structure equations and other fundamental properties on the semi-invariant submanifold when \widetilde{M} is a complex space form and state important known results on a real hypersurface of a complex space form without proof.

In §3, we prove a generalization of Lawson's theorem([17]) to codimension 3 on a compact minimal semi-invariant submanifold of a complex projective space $P_{n+1}C$ by using the reduction theorem.

Finally §4 is devoted to study of the third fundamental forms in a minimal semi-invariant submanifold satisfying $dn = 2\theta\omega$ for a certain scalar $\theta \neq \frac{c}{2}$ and $\theta \neq \frac{c}{4}\frac{4n-1}{2n-1}$, where $\omega(X,Y) = g(X,\phi Y)$ for any vectors X and Y. Then we prove that M is a real minimal hypersurface in a complex space form $M_n(c)$.

1. Preliminaries

Let \widetilde{M} be a real 2(n+1)-dimensional almost Hermitian manifold equipped with almost Hermitian structure J and a Riemannian metric tensor G and covered by a system of coordinate neighborhoods $\{W; y^A\}$.

Let M be a real (2n-1)-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\{V; x^h\}$ and immersed isometrically in \widetilde{M} by immersion $i: M \to \widetilde{M}$. Throughout the present paper the following convention on the range of indices are used, unless otherwise stated:

$$A, B, \dots = 1, 2, \dots, 2n + 2 : i, j, \dots = 1, 2, \dots, 2n - 1.$$

Henceforth the summation convention will be used with respect to those systems of indices. We respect the immersion i locally by $y^A = y^A(x^h)$ and $B_j = (B_j{}^A)$ are also (2n-1)-linearly independent local tangent vectors of M, where $B_j{}^A = \partial_j y^A$ and $\partial_j = \frac{\partial}{\partial x^j}$. Then mutually orthogonal unit normals, C, D and E may be chosen, and the induced Riemannian metric tensor g with components g_{ji} on M is given by $g_{ji} = G(B_j, B_i)$ since the immersion i is isometric.

As is well-known, a submanifold M of an almost Hermitian manifold \widetilde{M} is said to be a CR submanifold ([1], [2]) if it is endowed with a pair of mutually orthogonal complementary differentiable distribution (T, T^{\perp}) such that for any $x \in M$ we have $JT_x = T_x, J_x^{\perp} \subset T_x^{\perp}M$, where $T_x^{\perp}M$ denotes the normal space of M at x.

In particular M is said to be a semi-invariant submanifold([12], [13]) provided that $\dim T^{\perp}=1$ or to be CR submanifold with CR dimension n-1([16]). In this case the unit normal vector field in JT^{\perp} is called a distinguished normal to the semi-invariant submanifold. Thus we have (see [14])

(1.1)
$$JB_i = \Phi_i{}^h B_h + \xi_i C$$
, $JC = -\xi^h B_h$, $JD = -E$, $JE = D$

in each coordinate neighborhood, where we have put $\Phi_{ji} = G(JB_j, B_i)$, $\xi_i = G(JB_i, C)$, ξ^h being associated components of ξ_h . By the Hermitian property of J, it is clear that Φ_{ji} is skew-symmetric. A tensor field of type (1.1) with components Φ_i^h will be denoted by Φ . Moreover, the Hermitian property of J implies

(1.2)
$$\begin{aligned} \Phi_{i}{}^{r}\Phi_{r}{}^{h} &= -\delta_{i}{}^{h} + \xi_{i}\xi^{h}, \\ \xi^{r}\Phi_{r}{}^{h} &= 0, \quad \xi_{r}\Phi_{i}{}^{r} &= 0, \\ g_{rs}\Phi_{i}{}^{r}\Phi_{i}{}^{s} &= g_{ii} - \xi_{i}\xi_{i}, \quad \xi_{r}\xi^{r} &= 1, \end{aligned}$$

that is, the aggregate (Φ, ξ, g) defines an almost contact metric structure. Denoting by ∇_j the operator of van der Waerden-Bortolotti covariant differentiation with respect to the induced Riemannian metric, equation of Gauss for M of \widetilde{M}

(1.3)
$$\nabla_j B_i = A_{ji} C + K_{ji} D + L_{ji} E,$$

where A_{ji} , K_{ji} and L_{ji} are components of the second fundamental forms in the direction of normals C, D, E respectively. Equations of Weingarten are given by

(1.4)
$$\begin{cases} \nabla_{j}C = -A_{j}{}^{h}B_{h} + l_{j}D + m_{j}E, \\ \nabla_{j}D = -K_{j}{}^{h}B_{h} - l_{j}C + n_{j}E, \\ \nabla_{j}E = -L_{j}{}^{h}B_{h} - m_{j}C - n_{j}D, \end{cases}$$

where $A = (A_j{}^h)$, $A_{(2)} = (K_j{}^h)$ and $A_{(3)} = (L_j{}^h)$, which are related by $A_{ji} = A_j{}^r g_{ir}$, $K_{ji} = K_j{}^r g_{ir}$ and $L_{ji} = L_j{}^r g_{ir}$ respectively, and l_j , m_j and n_j being components of the third fundamental forms.

In the sequel, we denote the normal components of $\nabla_j C$ by $\nabla_j^{\perp} C$. The normal vector field C is said to be *parallel* in the normal bundle if we have $\nabla_j^{\perp} C = 0$, namely, l_j and m_j vanish identically.

In what follows we specialize to the case of an ambient Kaehlerian manifold M, that is, J is parallel. Then, by differentiating (1.1) covariantly along M and by comparing the tangential and normal parts, we get (see [28])

$$\nabla_i \Phi_i^{\ h} = -A_{ii} \xi^h + A_i^{\ h} \xi_i,$$

(1.6)
$$\nabla_j \xi_i = -A_{jr} \Phi_i^{\ r},$$

$$(1.7) K_{ji} = -L_{jr}\Phi_i{}^r - m_j\xi_i,$$

$$(1.8) L_{ii} = K_{ir}\Phi_i{}^r + l_i\xi_i.$$

REMARK. To write our formulas in a convention form, in the sequel we denote by $\alpha = A_{ji}\xi^{j}\xi^{i}$, $h = TrA, k = TrA_{(2)}, l = TrA_{(3)}, H_{(2)} = A_{ji}A^{ji}, K_{(2)} = K_{ji}K^{ji}$ and $L_{(2)} = L_{ji}L^{ji}$.

From (1.7) and (1.8) we have

$$(1.9) K_{jr}\xi^r = -m_j, \quad L_{jr}\xi^r = l_j,$$

$$(1.10) m_r \xi^r = -k, \quad l_r \xi^r = l,$$

where we have used (1.2). Transforming (1.8) by $\Phi_k{}^j$ and using (1.2) and (1.7), we obtain

$$-K_{ik} - m_i \xi_k = K_{rs} \Phi_i^{\ r} \Phi_k^{\ s} + \xi_i \Phi_{kr} l^r,$$

which unable us to obtain $m_k \xi_i - m_i \xi_k = \xi_i \Phi_{kr} l^r - \xi_k \Phi_{ir} l^r$. Thus, it follows that

which together with (1.2) yields

Taking the inner product (1.11) with l^{j} and making use of (1.10), we get

$$(1.13) m_r l^r = -kl.$$

If we transform (1.7) and (1.8) by L_k^i and take account of (1.7), (1.8) itself and (1.9), then we have respectively

(1.14)
$$K_{jr}L_{i}^{r} + K_{ir}L_{j}^{r} = -(l_{j}m_{i} + l_{i}m_{j}),$$

$$(1.15) L_{ii}^2 - K_{ii}^2 = l_i l_i - m_i m_i.$$

Now, we put $U_j = \xi^r \nabla_r \xi_j$. Then U is orthogonal to the structure vector ξ . From (1.2) and (1.6), we see that

$$\Phi_{jr}U^r = A_{jr}\xi^r - \alpha\xi_j.$$

Differentiating this covariantly along M and using (1.5) and (1.6), we find

$$(1.17) \ \xi_j(A_{kr}U^r + \nabla_k \alpha) + \Phi_{jr}\nabla_k U^r = \xi^r \nabla_k A_{jr} - A_{jr}A_{ks}\Phi^{rs} + \alpha A_{kr}\Phi_j^r.$$

2. Semi-invariant submanifolds of codimension 3 in a complex space form

In the rest of this paper we shall suppose that \widetilde{M} is a Kaehlerian manifold of constant holomorphic sectional curvature c, which is called a *complex space form* and denoted by $M_{n+1}(c)$. The curvature tensor of $M_{n+1}(c)$ is given by

$$R_{DCBA} = \frac{c}{4}(G_{DA}G_{CB} - G_{CA}G_{DB} + J_{DA}J_{CB} - J_{CA}J_{DB} - 2J_{DC}J_{BA}).$$

Using this and (1.1), equations of the Gauss and Codazzi are given respectively by

(2.1)
$$R_{kjih} = \frac{c}{4} (g_{kh}g_{ji} - g_{jh}g_{ki} + \Phi_{kh}\Phi_{ji} - \Phi_{jh}\Phi_{ki} - 2\Phi_{kj}\Phi_{ih}) + A_{kh}A_{ji} - A_{jh}A_{ki} + K_{kh}K_{ji} - K_{jh}K_{ki} + L_{kh}L_{ii} - L_{ih}L_{ki},$$

(2.2)
$$\nabla_{k}A_{ji} - \nabla_{j}A_{ki} = l_{k}K_{ji} - l_{j}K_{ki} + m_{k}L_{ji} - m_{j}L_{ki} + \frac{c}{4}(\xi_{k}\Phi_{ji} - \xi_{j}\Phi_{ki} - 2\xi_{i}\Phi_{kj}),$$

(2.3)
$$\nabla_{k}K_{ji} - \nabla_{j}K_{ki} = l_{j}A_{ki} - l_{k}A_{ji} + n_{k}L_{ji} - n_{j}L_{ki},$$

(2.4)
$$\nabla_k L_{ji} - \nabla_j L_{ki} = m_j A_{ki} - m_k A_{ji} + n_j K_{ki} - n_k K_{ji},$$

where R_{kjih} is covariant components of the Riemann-Christoffel curvature tensor of M, and those of the Ricci by

(2.5)
$$\nabla_{k}l_{j} - \nabla_{j}l_{k} = A_{jr}K_{k}^{r} - A_{kr}K_{j}^{r} + n_{k}m_{j} - n_{j}m_{k},$$

(2.6)
$$\nabla_{k} m_{j} - \nabla_{j} m_{k} = A_{jr} L_{k}^{r} - A_{kr} L_{j}^{r} + n_{j} l_{k} - n_{k} l_{j},$$

(2.7)
$$\nabla_{k} n_{j} - \nabla_{j} n_{k} = K_{jr} L_{k}^{r} - K_{kr} L_{j}^{r} + l_{j} m_{k} - l_{k} m_{j} + \frac{c}{2} \Phi_{kj}.$$

Let S_{ji} be the components of the Ricci tensor S of M. Then the Gauss equation (2.1) gives

$$(2.8) S_{ji} = \frac{c}{4} \{ (2n+1)g_{ji} - 3\xi_j \xi_i \} + hA_{ji} - A_{ji}^2 + kK_{ji} - K_{ji}^2 + lL_{ji} - L_{ji}^2,$$

which implies that the scalar curvature ρ of M is given by

(2.9)
$$\rho = c(n^2 - 1) + h^2 - H_{(2)} + k^2 - K_{(2)} + l^2 - L_{(2)}.$$

If we take account of (1.9) and (1.10), then the above equation can be written as

$$(2.10) \quad \rho = c(n^2 - 1) + h^2 - H_{(2)} - ||K_{ji} - k\xi_j\xi_i||^2 - ||L_{ji} - l\xi_j\xi_i||^2,$$

where $||F||^2 = g(F, F)$ for any tensor field F on M.

In the following we need the following definition for the later use. The normal connection of a semi-invariant submanifold of codimension 3 in a complex space form is said to be L-flat if it satisfies $dn = \frac{c}{2}\omega$, that is, $\nabla_j n_i - \nabla_i n_j = \frac{c}{2} \Phi_{ji}$, where $\omega(X,Y) = g(X,\Phi Y)$ for any vectors X and Y on M(p514 [30]).

From a semi-invariant submanifold with L-flat normal connection, it is known that

THEOREM A[12]. Let M be a semi-invariant submanifold of codimension 3 with L-flat normal connection in a complex projective space $P_{n+1}C$. If the structure vector ξ is an eigenvector of the shape operator in the direction of the distinguished normal, then we have $A_{(2)} = A_{(3)} = 0$.

On the other hand, Takagi([26]) classified all homogeneous real hypersurfaces of P_nC as six model spaces which are said to be A_1 , A_2 , B, C, D and E, and Cecil-Ryan([5]) and Kimura([15]) proved that they are realized as the tubes of constant radius over Kaehlerian submanifolds. Namely, he proved the following:

THEOREM B[26]. Let M be a homogeneous real hypersurface of P_nC . Then M is locally congruent to one of the followings:

- (A₁) a geodesic hypersphere, that is, a tube over a hyperplane $P_{n-1}C$,
- (A₂) a tube over a totally geodesic $P_kC(1 \le k \le n-2)$,
- (B) a tube over a complex quadric Q_{n-1} ,
- (C) a tube over $P_1C \times P_{\frac{(n-1)}{2}}C$ and $n(\geq 5)$ is odd,
- (D) a tube over a complex Grassman $G_{2,5}C$ and n=9,
- (E) tube over a Hermitian symmetric space SO(10)/U(5) and n = 15.

Also Berndt([3]) showed that all real hypersurfaces with constant principle curvatures of a complex hyperbolic space H_nC are realized as the tubes of constant radius over certain submanifolds when the structure vector ξ is principal. Nowadays in H_nC they are said to be of type A_0 , A_1 , A_2 , and B. He proved the following:

THEOREM C[3]. Let M be a real hypersurface of H_nC . Then M has constant principal curvatures and ξ is principal if and only if M is locally congruent to one of the following:

- (A_0) a self-tube, that is, a horosphere,
- (A_1) a geodesic hypresphere or a tube over a hyperplane $H_{n-1}C$,
- (A₂) a tube over a totally geodesic H_kC ($1 \le k \le n-2$),
- (B) a tube over a totally real hyperbolic space H_nR .

For a compact minimal real hypersurface of a complex projective space the following theorem by Lawson is fundamental.

THEOREM D[17]. Let M be an n-dimensional compact, minimal real hypersurface of $P^{\frac{n+1}{2}}C$ with Fubini-Study metric of constant holomorphic sectional curvature 4. If the scalar curvature of M is greater than or equal to (n+2)(n-1), then M is an $M_{p,q}^c$ for some p,q satisfying p+q=m-1, where $m=\frac{n+1}{2}$.

3. Compact minimal semi-invariant submanifold

Let M be a minimal semi-invariant submanifold of codimension 3 in a complex projective space $P_{n+1}C$ with constant holomorphic sectional curvature 4.

From (1.5) and (1.6), we have

(3.1)
$$\nabla_i \nabla_j \xi^i = -A_{jr}^2 \xi^r - (\nabla_k A_{ji}) \Phi^{ki}.$$

Then (2.10) is reduced to

(3.2)
$$\rho = 4(n^2 - 1) - H_{(2)} - K_{(2)} - L_{(2)}.$$

Transvecting ξ^i to (1.14) and using (1.9) and (1.10) with k=l=0, we find

$$(3.3) L_{jr}l^r + K_{jr}m^r = 0.$$

On the other hand, multiplying (2.2) with Φ^{ki} and summing for k and i, and taking account of (1.7)~(1.10) and (3.3), we have

$$(\nabla_k A_{ji}) \Phi^{ki} = -2K_{jr} m^r - 2(n-1)\xi_j,$$

which together with (3.1) yields

$$\nabla_{i}\nabla_{j}\xi^{i} = -A_{jr}^{2}\xi^{r} + 2K_{jr}m^{r} + 2(n-1)\xi_{j}.$$

Hence we obtain

$$\xi^j \nabla_i \nabla_j \xi^i = 2(n-1) - 2m_r m^r - A_{ji}{}^2 \xi^j \xi^i$$

by virtue of (1.9).

Since we have div $U = (\nabla_j \xi_i)(\nabla^i \xi^j) + \xi^j \nabla_i \nabla_j \xi^i$, the above equation implies

$$\|\nabla_j \xi_i + \nabla_i \xi_j\|^2 = 2 \operatorname{div} U + 2\{H_{(2)} - 2(n-1)\} + 4m_r m^r.$$

Thus we have

(3.4)
$$\operatorname{div} U = \frac{1}{2} ||A\Phi - \Phi A||^2 - H_{(2)} + 2(n-1) - 2m_t m^t$$

since M is minimal.

Using (2.10), the equation (3.4) turns out to be

(3.5) div
$$U = \frac{1}{2} ||A\Phi - \Phi A||^2 + \rho - 2(n-1)(2n+1) - 2m_r m^r + K_{(2)} + L_{(2)}$$
.

By the way, we have

(3.6)
$$||K_{ji} + m_j \xi_i + m_i \xi_j||^2 = K_{(2)} - 2m_r m^r.$$

Further, suppose that $\rho \geq 2(n-1)(2n+1)$. Then we have from the last two relationships

(3.7)
$$A\Phi = \Phi A, \quad A_{(3)} = 0,$$

$$(3.8) K_{ji} + m_j \xi_i + m_i \xi_j = 0$$

because M is compact.

Multiplying (3.8) with K^{ji} and summing for j and i and using (1.9), we find $K_{(2)} = 2m_r m^r$.

Since it is, using (1.15) and $A_{(3)} = 0$, seen that $K_{(2)} = m_r m^r - l_r l^r$, it follows that $K_{(2)} = 0$ and hence $A_{(2)} = 0$, and $l_j = m_j = 0$, that is, the distinguished normal is parallel in the normal bundle.

Let $N_0(p) = \{ \eta \in T_p^{\perp}(M) | A_{\eta} = 0 \}$ and $H_0(p)$ the maximal J-invariant subspace of $N_0(p)$. Since we have $A_{(2)} = A_{(3)} = 0$, the orthogonal complement of $H_0(p)$ is invariant under parallel translation with respect to the normal connection because of $\nabla_i^{\perp} C = 0$.

Thus by the reduction theorem in ([8], [23]) we have

THEOREM 3.1. Let M be a real (2n-1)-dimensional compact, minimal semi-invariant submanifold in a complex projective space $P_{n+1}C$. If the scalar curvature $\geq 2(n-1)(2n+1)$, then M is a homogeneous type A_1 or A_2 .

4. The third fundamental forms in a minimal semi-invariant submanifold

In this section we shall suppose that M is a minimal semi-invariant submanifold of codimension 3 in a complex space form $M_{n+1}(c)$ and that

the third fundamental form n satisfies $dn = 2\theta\omega$ for a certain scalar θ on M, namely,

$$(4.1) \nabla_j n_i - \nabla_i n_j = 2\theta \Phi_{ji}.$$

Then we have from (2.7)

$$K_{jr}L_{i}^{\ r} - K_{ir}L_{j}^{\ r} + l_{j}m_{i} - l_{i}m_{j} = -2(\theta - \frac{c}{4})\Phi_{ji},$$

or, using (1.14)

(4.2)
$$K_{jr}L_{i}^{r} + l_{j}m_{i} = -(\theta - \frac{c}{4})\Phi_{ji},$$

which together with (1.9) and (1.10) gives

(4.3)
$$K_{jr}l^r = 0, L_{jr}m^r = 0.$$

Multiplying (4.2) with Φ^{ji} and summing for j and i, and taking account of (1.8), (1.9) and (1.12), we find

(4.4)
$$L_{(2)} = 2(n-1)(\theta - \frac{c}{4}).$$

We notice here that θ is constant if n > 2 ([14]). Transvecting (4.2) with m^i and l^j , and making use of (1.11), (1.12) and (4.3), we find respectively

$$(\theta - \frac{c}{4} - m_r m^r)l_j = 0, \ (\theta - \frac{c}{4} - l_r l^r)l_j = 0.$$

Now, let Ω be a set of points such that $l_r l^r \neq 0$ on M and suppose that Ω is non-empty. Then we have

(4.5)
$$m_r m^r = \theta - \frac{c}{4}, \ l_r l^r = \theta - \frac{c}{4}$$

because of (1.12) on Ω . In what follows we discuss our arguments on the open subset Ω of M. Transforming (4.2) by $\Phi_k{}^i$ and taking account of (1.7) and (1.12), we find

(4.6)
$$K_{jk}^{2} + \xi_{k}(K_{jr}m^{r}) + l_{j}l_{k} = (\theta - \frac{c}{4})(g_{jk} - \xi_{j}\xi_{k}),$$

from which, taking the skew-symmetric part,

$$\xi_j K_{kr} m^r - \xi_k K_{jr} m^r = 0.$$

Thus, it follows, using (1.9), that $K_{jr}m^r = -(m_rm^r)\xi_j$. Therefore (4.6) turns out to be

(4.7)
$$K_{ji}^{2} = (\theta - \frac{c}{4})g_{ji} - l_{j}l_{i}$$

by virtue of (4.5). Differentiating this covariantly along Ω , we find

$$(4.8) K_i^{\ r} \nabla_k K_{ir} + K_i^{\ r} \nabla_k K_{jr} + l_j \nabla_k l_i + l_i \nabla_k l_j = 0,$$

from which, taking the skew-symmetric part with respect to indices k and j and making use of (2.3) and (2.5),

$$K_{j}^{r} \nabla_{k} K_{ir} - K_{k}^{r} \nabla_{j} K_{ir} + l_{j} \nabla_{k} l_{i} - l_{k} \nabla_{j} l_{i}$$

$$+ K_{i}^{r} (l_{j} A_{kr} - l_{k} A_{jr} + n_{k} L_{jr} - n_{j} L_{kr})$$

$$+ l_{i} (A_{j}^{r} K_{kr} - A_{k}^{r} K_{jr} + n_{k} m_{j} - n_{j} m_{k}) = 0$$

for any indices k, j and i. Thus, interchanging indices k and i, we have

$$K_{j}^{r} \nabla_{i} K_{kr} - K_{i}^{r} \nabla_{j} K_{kr} + l_{j} \nabla_{i} l_{k} - l_{i} \nabla_{j} l_{k}$$

$$+ l_{j} A_{ir} K_{k}^{r} - l_{i} A_{jr} K_{k}^{r} + n_{i} K_{k}^{r} L_{jr}$$

$$- n_{j} K_{k}^{r} L_{ir} + l_{k} (K_{i}^{r} A_{jr} - K_{j}^{r} A_{ir} + n_{i} m_{j} - n_{j} m_{i}) = 0.$$

Hence, if we use (1.14), (2.3), (2.5), and (4.2), then we obtain

$$K_{j}^{r} \nabla_{k} K_{ir} - K_{i}^{r} \nabla_{k} K_{jr} + l_{j} \nabla_{k} l_{i} - l_{i} \nabla_{k} l_{j} + 2l_{j} A_{kr} K_{i}^{r} - 2l_{i} A_{kr} K_{j}^{r} + 2(\theta - \frac{c}{4}) n_{k} \Phi_{ji} = 0.$$

Adding this to (4.8), we obtain

$$(4.9) K_j^r \nabla_k K_{ir} + l_j (\nabla_k l_i + A_{kr} K_i^r) - l_i A_{kr} K_j^r + (\theta - \frac{c}{4}) n_k \Phi_{ji} = 0.$$

Since we have (1.8), (4.3) and (4.7), by transforming K_h^j , we have

$$(\theta - \frac{c}{4})(\nabla_k K_{hi} - n_k L_{hi} + n_k l_h \xi_i - l_i A_{hk}) - l_h (l^r \nabla_k K_{ir}) + (A_{kr} l^r) l_h l_i = 0.$$

First of all, we prove

LEMMA 4.1. Let M be a real (2n-1)-dimensional (n>2) semi-invariant minimal submanifold of codimension 3 in a complex space form $M_{n+1}(c)$. If it satisfies $dn=2\theta\omega$ and $\theta\neq\frac{c}{2}$, then $\nabla_j^{\perp}C=0$, namely, the distinguished normal is parallel in the normal bundle.

PROOF. Because of (1.9), (1.10), (1.15) and (4.7), we have

$$(4.11) L_{jr}l^r = (\theta - \frac{c}{4})\xi_j.$$

Differentiating the first equation of (4.3) covariantly along Ω , we find

$$l^r \nabla_k K_{jr} + K_j{}^r \nabla_k l_r = 0,$$

which together with (4.3) implies that $(\nabla_k K_{ji})l^j l^i = 0$. Thus if we transvect l^i to (4.10) and make use of (1.10), (4.5) and (4.11), then we obtain

$$(4.12) \qquad (\theta - \frac{c}{4})\{(\nabla_k K_{jr})l^r + l_j A_{kr}l^r - (\theta - \frac{c}{4})(A_{jk} + n_k \xi_j)\} = 0.$$

If $\theta = \frac{c}{4}$, then $L_{ji} = 0$ by virtue of (4.4). Hence (4.2) means $l_j = m_j = 0$ and consequently $\nabla_j^{\perp} C = 0$. Thus we may only consider the case where $\theta \neq \frac{c}{4}$.

If we take the skew-symmetric part of (4.12) and use (2.3) and (4.11), then we have

$$l_j A_{kr} l^r - l_k A_{jr} l^r = 0,$$

which implies

$$(4.13) A_{jr}l^r = \sigma l_j$$

for some function σ on Ω . Because of (4.12) and (4.13), the equation (4.10) is reduced to

$$(4.14) \qquad (\theta - \frac{c}{4})(\nabla_k K_{ji} - n_k L_{ji} - l_i A_{jk} - l_j A_{ik}) + 2\sigma l_j l_i l_k = 0.$$

Since we have $K_{jr}\xi^r = -m_j$, by differentiating covariantly along Ω and making use of (1.1), (1.8), (1.9), (1.10) and (4.14), we find

$$(4.15) \nabla_k m_j = -n_k l_j - A_{kr} L_j^r.$$

If we differentiate (1.10) with k=0 covariantly and take account of (1.6), (1.9), (1.12) and (4.15), we obtain

$$(4.16) A_{jr}l^r = 0.$$

Thus, (4.14) is reduced to

$$(4.17) \nabla_k K_{ji} = n_k L_{ji} + l_i A_{jk} + l_j A_{ik}.$$

Substituting (4.17) into (4.9), we have

$$n_k K_{jr} L_i^r + l_j (\nabla_k l_i + A_{kr} K_i^r) + (\theta - \frac{c}{4}) n_k \Phi_{ji} = 0,$$

which transvect l^j and using (1.11) with k = 0, (4.3) and (4.5),

$$(4.18) \nabla_k l_j = n_k m_j - A_{kr} K_j^r.$$

From this and the first equation of (1.9), we verify that

$$(4.19) A_{ir}m^r = 0.$$

Differentiating (4.16) covariantly along Ω and using (4.18) and (4.19), we find

$$(4.20) (\nabla_k A_{jr}) l^r - A_{jr} A_{ks} K^{rs} = 0,$$

from which, taking the skew-symmetric part and using (1.11), (2.2), (4.3), (4.11), and (4.16), $(\theta - \frac{c}{2})(m_k\xi_j - m_j\xi_k) = 0$. Since $\theta \neq \frac{c}{2}$, it follows that $m_j = 0$ and hence $l_j = 0$ because of (1.12). This completes the proof.

We now continue, our arguments under the same hypotheses as in Lemma 4.1. Then we have $l_j = m_j = 0$. Thus, (2.2), (2.3), (2.5), (2.6), (4.2) and (4.6) turn out respectively to

(4.21)
$$\nabla_k A_{ji} - \nabla_j A_{ki} = \frac{c}{4} (\xi_k \Phi_{ji} - \xi_j \Phi_{ki} - 2\xi_i \Phi_{kj}),$$

$$(4.22) \nabla_k K_{ji} - \nabla_j K_{ki} = n_k L_{ji} - n_j L_{ki},$$

(4.23)
$$A_{jr}K_{i}^{r} - A_{ir}K_{j}^{r} = 0, \quad A_{jr}L_{i}^{r} - A_{ir}L_{j}^{r} = 0,$$

(4.24)
$$K_{jr}L_{i}^{r} = -(\theta - \frac{c}{4})\Phi_{ji},$$

(4.25)
$$K_{ji}^{2} = (\theta - \frac{c}{4})(g_{ji} - \xi_{j}\xi_{i}).$$

Since we have $K_{ir}\xi^r = 0$, by differentiating covariantly along M and using (1.6) and (1.8) with $l_j = 0$, we find

$$(4.26) \qquad (\nabla_k K_{ir}) \xi^r = -L_{ir} A_k^r.$$

Differentiating (4.25) covariantly along M and using (1.6), we have

$$(4.27) \quad K_j^{\ r}(\nabla_k K_{ir}) + K_i^{\ r}(\nabla_k K_{jr}) = (\theta - \frac{c}{4})(\xi_j A_{kr} \Phi_i^{\ r} + \xi_i A_{kr} \Phi_j^{\ r}).$$

Using the quite same method as that used to (4.9) from (4.8), we can derive from (4.27) the following:

$$2K_{j}^{r}\nabla_{k}K_{ir} = (\theta - \frac{c}{4})\{2n_{k}\Phi_{ij} + (A_{ir}\Phi_{j}^{r} - A_{jr}\Phi_{i}^{r})\xi_{k} + (A_{kr}\Phi_{j}^{r} - A_{jr}\Phi_{k}^{r})\xi_{i} + (A_{kr}\Phi_{i}^{r} + A_{ir}\Phi_{k}^{r})\xi_{i}\},$$

where we have used (4.22) and (4.24).

In the following, we are going to prove $A_{(2)} = 0$. By means of (4.25), we may only consider the case where $\theta - \frac{c}{4} \neq 0$ because it is already seen that θ is constant. By (4.22) we can, using k = l = 0, verify that $\nabla_r K_j^r = L_{jr} n^r$. Thus, multiplying (4.28) with g^{ki} and summing for k and i, we find

$$K_{j}^{r}L_{rs}n^{s} = (\theta - \frac{c}{4})(\Phi_{rj}n^{r} + \xi^{i}A_{ir}\Phi_{j}^{r}),$$

which together with (4.24) implies that $\xi^i A_{ir} \Phi_j^{\ r} = 0$ and hence

$$(4.29) A_{jr}\xi^r = \alpha \xi_j.$$

Therefore, if we transvect (4.28) with ξ^{j} and take account of (1.9) and (4.29), then we obtain

$$(4.30) A_{jr}\Phi_{i}^{\ r} + A_{ir}\Phi_{j}^{\ r} = 0.$$

From this and (4.21), we can prove the followings (see [9]):

(4.31)
$$A_{ji}^{2} = \alpha A_{ji} + \frac{c}{4} (g_{ji} - \xi_{j} \xi_{i}),$$

(4.32)
$$\nabla_k A_{ji} = -\frac{c}{4} (\xi_j \Phi_{ki} + \xi_i \Phi_{kj}).$$

By means of (4.30), the equation (4.28) can be written as

$$K_{j}^{r} \nabla_{k} K_{ir} = (\theta - \frac{c}{4})(n_{k} \Phi_{ij} + \xi_{k} A_{ir} \Phi_{j}^{r} + \xi_{i} A_{kr} \Phi_{j}^{r}).$$

Transforming by K_h^j and using (1.8), (4.23), (4.25) and (4.26), we obtain

$$(4.33) \nabla_{k} K_{ji} = n_{k} L_{ji} - \xi_{k} A_{jr} L_{i}^{\ r} - \xi_{i} A_{kr} L_{j}^{\ r} - \xi_{j} A_{ir} L_{k}^{\ r}.$$

Differentiating (1.8) with $l_j = 0$ covariantly and using (1.5), (1.7) and (4.33), we have

$$(4.34) \nabla_k L_{ji} = -n_k K_{ji} + \xi_k A_{jr} K_i^r + \xi_i A_{kr} K_j^r + \xi_j A_{ir} K_k^r,$$

which together (1.9) with k = l = 0 and (4.29) implies that

(4.35)
$$Tr(AA_{(2)}) = 0, Tr(A^2A_{(2)}) = 0$$

because of (4.21).

On the other hand, we have $A_{(2)}\xi=0$ and $TrA_{(2)}=0$ and (4.25), the shape operator $A_{(2)}$ has at most three distinct constant eigenvalues $0, \sqrt{\theta-\frac{c}{4}}, -\sqrt{\theta-\frac{c}{4}}$ with multiplicities 1, n-1, n-1 respectively.

By (4.29), (4.30) and (4.31), we also see that A has at most three distinct constant eigenvalues α , $(\alpha + \sqrt{D})/2$, $(\alpha - \sqrt{D})/2$ with multiplicities 1, r, s respectively, where $D = \alpha^2 + c, r + s = 2n - 2$.

Since we have $AA_{(2)}=A_{(2)}A$, it follows that A and $A_{(2)}$ are diagonalizable at the same time. Because of (4.34), we have $(\theta-\frac{c}{4})r(\alpha^2+c)=0$. Thus s=2(n-1) and consequently A has two constant eigenvalues α and $(\alpha-\sqrt{D})/2$ with multiplies 1,2(n-1) respectively. Since M is minimal, it follows that

$$(4.36) n\alpha = (n-1)\sqrt{D}.$$

Differentiating (4.33) covariantly along M and using (1.6), (1.9), (4.31), (4.32) and (4.34), we find

$$\nabla_{h}\nabla_{k}K_{ji} = (\nabla_{h}n_{k})L_{ji} - \frac{c}{4}(K_{ki}\xi_{j}\xi_{h} + K_{jh}\xi_{k}\xi_{i} + 2K_{ih}\xi_{j}\xi_{k})$$

$$+ B_{hkji} - \alpha(\xi_{j}\xi_{h}A_{kr}K_{i}^{r} + \xi_{k}\xi_{i}A_{jr}K_{h}^{r} + 2\xi_{j}\xi_{k}A_{ir}K_{h}^{r})$$

$$+ (A_{hs}\Phi_{j}^{s})(A_{kr}L_{i}^{r}) + (A_{hs}\Phi_{k}^{s})(A_{ir}L_{j}^{r}) + (A_{hs}\Phi_{i}^{s})(A_{jr}L_{k}^{r})$$

where B_{hkji} is a certain tensor with $B_{hkji} = B_{khji}$.

Multiplying the last equation with Φ^{hk} and summing for h and k, and making use of (1.2), (1.7), (1.8), (4.1), (4.23), (4.30) and (4.31), we find

$$\Phi^{hk}\nabla_h\nabla_kK_{ji} = \{2(n-1)\theta - \frac{c}{2}\}L_{ji} - \alpha A_{jr}L_i^r,$$

or, using the Ricci identity for $A_{(2)}$,

$$(4.37) \Phi^{hk}(R_{hkjr}K_i^r + R_{hkir}K_j^r) = -\{c - 4(n-1)\theta\}L_{ji} + 2\alpha A_{jr}L_i^r.$$

On the other hand, we have from (2.1)

$$\Phi^{kl}R_{klih} = (cn + \frac{c}{2})\Phi_{hi} - 2\alpha A_{hr}\Phi_{i}^{\ r} + 4K_{hr}L_{i}^{\ r},$$

where we have used (1.8), (1.9), (4.30) and (4.31), which together with (1.8) and (4.25) yields

$$\Phi^{kl}(R_{klir}K_j^r + R_{kljr}K_i^r) = \{8\theta - (2n+3)c\}L_{ji} - 4\alpha A_{jr}L_i^r.$$

From this and (4.37), it follows that

(4.38)
$$3\alpha A_{jr}L_i^r = \{2(n+1)\theta - (n+2)c\}L_{ji},$$

which implies

$$3\alpha(A_{ji} - \alpha\xi_{j}\xi_{i}) = \{2(n+1)\theta - (n+2)c\}(g_{ji} - \xi_{j}\xi_{i}).$$

If we take the trace of this, then we obtain

$$(4.39) -3\alpha^2 = 2(n-1)\{2(n+1)\theta - (n+2)c\},\$$

which together with (4.37) implies that

(4.40)
$$\theta = \frac{c}{4} \frac{4n-1}{2n-1}.$$

From this and Lemma 4.1, we have

LEMMA 4.2. Let M be a real (2n-1)-dimensional semi-invariant minimal submanifold of codimension 3 in a complex space form $M_{n+1}(c)$. If it satisfies $dn = 2\theta\omega$ for a certain scalar $\theta \neq \frac{c}{2}$ and $\theta \neq \frac{c}{4}\frac{4n-1}{2n-1}$, then we have $A_{(2)} = A_{(3)} = 0$.

REMARK. It is proved in ([14]) that the following: Let M be a real (2n-1)-dimensional (n>2) semi-invariant submanifold of codimension 3 satisfying $dn=2\theta\omega$ for a certain scalar $\theta<\frac{c}{2}$ and $\nabla_j^{\perp}C=0$ in a complex projective space $P_{n+1}C$. Then the same conclusion as that Lemma 4.2 are valid.

By the reduction theorem in ([8], [23]) and by Lemma 4.1 and Lemma 4.2, we have

THEOREM 4.3. Let M be a real (2n-1)-dimensional (n>2) semi-invariant minimal submanifold in a complex space form $M_{n+1}(c)$. If the third fundamental form n satisfies $dn=2\theta\omega$ for a certain scalar $\theta\neq\frac{c}{2}$ and $\theta\neq\frac{c}{4}\frac{4n-1}{2n-1}$ where $\omega(X,Y)=g(X,\Phi Y)$ for any vector X and Y on M, then M is a minimal real hypersurface in a complex space form $M_n(c)$.

Owing to Theorem B, C and Theorem 4.3, we have

THEOREM 4.4. Let M be a real (2n-1)-dimensional (n>2) semi-invariant minimal submanifold in a complex space form $M_{n+1}(c)$ such that the third fundamental tensor satisfies $dn=2\theta\omega$ for a certain scalar θ , $\theta \neq \frac{c}{2}$ and $\theta \neq \frac{c}{4}\frac{4n-1}{2n-1}$. Then M has constant principal curvatures corresponding the shape operator in the direction of distinguished normal and the structure vector ξ is an eigenvector of A if and only if M is locally congruent to a homogeneous minimal real hypersurface of $M_n(c)$.

References

- A. Bejancu, CR-submanifolds of a Kaherian manifold I, Proc. Amer. Math. Soc. 69 (1978), 135-142.
- [2] A. Bejancu, Geometry of CR-submanifolds, D. Reidel Pub. Co., 1978.
- [3] J. Berndt, Real hypersurfaces with constant principal curvatures in a hyperbolic space, J. reine angew Math. 395 (1989), 132-141.
- [4] D. E. Blair, G. D. Ludden, and K. Yano, Semi-invariant immersion, Kodai Math. Sem. Rep. 27 (1976), 313-319.
- [5] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481-499.
- [6] J. T. Cho and U-H. Ki, Real hypersurfaces of a complex projective space in terms of the Jacobi operators, Acta Math. Hungar. 80 (1998), 155-167.
- [7] Y.-W. Choe and M. Okumura, Scalar curvature of a certain CR-submanifold of a complex projective space, Arch. Math. 68 (1997), 340-346.
- [8] J. Erbacher, Reduction of the codimension of an isometric immersion, J. Differential Geom. 5 (1971), 333-340.
- [9] U-H. Ki, Cyclic-parallel real hypersurfaces of a complex projective space, Tsukuba J. Math. 12 (1988), 259-268.
- [10] _____, Real hypersurfaces with parallel Ricci tensor of a complex space form, Tsukuba J. Math. 13 (1989), 73-81.
- [11] _____, A survey on real hypersurfaces in a complex space form, Korean Annals of Math. 15 (1998), 153-165.
- [12] U-H. Ki and H. -J. Kim, Semi-invariant submanifolds with lift-flat normal connection in a complex projective space, Kyungpook Math. J. 40 (2000), 185-194.
- [13] U-H. Ki, S.-J. Kim, S.-B. Lee, and I.-Y. Yoo, Semi-invariant submanifolds with harmonic curvature, J. Korean Math. Soc. 27 (1990), 157-166.
- [14] U-H. Ki, H. Song, and R. Takagi, Submanifolds of codimension 3 admitting almost contact metric structure a complex projective space, Nihonkai Math. J. 11 (2000), 57-86.
- [15] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137-149.
- [16] J. H. Kwon and J. S. Pak, CR-submanifolds of (n-1) CR-dimension in a complex projective space, Saitama Math. J. 15 (1997), 55-65.

- [17] H. B. Lawson Jr, Rigidity theorems in rank-1 symmetric spaces, J. Differential Geom. 4 (1970), 349-357.
- [18] S. Maeda, Ricci tensors of real hypersurfaces in a complex projective space, Proc. Amer. Math. Soc. 122 (1994), 1229-1235.
- [19] S. Montiel, Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan 37 (1985), 515-535.
- [20] S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata 20 (1986), 245–261.
- [21] M. Okumura, On some real hypersurfaces in a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364.
- [22] _____, Normal curvature and real submanifold of the complex projective space, Geometriae Didicata 7 (1978), 509-517.
- [23] _____, Codimension reduction problem for real submanifold of complex projective space, Collo. Math. Janos Bolyai Dih. Geom. 56 (1989), 573-585.
- [24] M. Okumura and L. Vanheke, n-dimensional real submanifolds with (n-1)-dimensional maximal holomorphic tangent subspace in complex projective spaces, Rendiconti del circolo Mat. di Palermo 43 (1994), 233-249.
- [25] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.
- [26] _____, Real hypersurfaces in a complex projective space with constant principal curvatures I,II, J. Math. Soc. Japan 27 (1975), 43-53 and 507-516.
- [27] Y. Tashiro, Relations between the theory of almost complex spaces and that of almost contact space, Sugaku in Japaness 16 (1964), 34-61.
- [28] K. Yano and U-H. Ki, On $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure satisfying $\lambda^2 + \mu^2 + \nu^2 = 1$, Kodai Math. Sem. Rep. 29 (1978), 285–307.
- [29] K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhäuser, 1983.
- [30] _____, Structures on manifolds, World Scientific, Pulb. Co., Singapore, 1984.

Seong-Cheol Lee, Seung-Gook Han Department of Mathematics Chosun University Kwangju 502-759, Korea

U-Hang Ki Department of Mathematics Kyungpook University Taegu 702-701, Korea