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SEMI-INVARIANT MINIMAL SUBMANIFOLDS OF
CODIMENSION 3 IN A COMPLEX SPACE FORM

SEONG-CHEOL LEE, SEUNG-GoOK HaN, AND U-HaNnG K1

ABSTRACT. In this paper we prove the following : Let M be a real
{2n-1)-dimensional compact minimal semi-invariant submanifold in
a complex projective space Pr41C. If the scalar curvature > 2(n —
1)}(2n+1), then M is a homogeneous type A; or As. Next suppose that
the third fundamental form n satisfies dn = 20w for a certain scalar
8 +# 5 and 8 # %‘é:‘l:i , where w(X,Y) = g(X, ¢Y') for any vectors X
and Y on a semi-invariant submanifold of codimension 3 in a complex
space form M, 11(e). Then we prove that M has constant principal
curvatures corresponding the shape operator. in the direction of the
distinguished normal and the structure vector £ is an eigenvector of
A if and only if M is locally congruent to a homogeneous minimal real
hypersurface of M, (c}.

0. Introduction

A submanifold M is called a C'R submanifold of a Kaehlerian mani-
fold M with complex structure J if it is endowed with a pair of mutually
orthogonal and complementary differentiable distribution (7, 71) such
that for any = € M we have JT, = T, Jt ¢ Tt M, where T1 M de-
notes the normal space of M at z([1]). In particular, M is said to be a
semi-invariant submanifold if dimT =1, and the unit normal in J7'* is
called a distinguished normal to M([24], [27]). In this case, M admits
an induced almost contact metric structure (@,£,9). A typical exam-
ple of a semi-invariant submanifold is real hypersurfaces. For the real
hypersurface case, when M is a complex space form, many results are
known. For example, we refer to (]3], [5], [6], [8], [11], {15}, [18], {19],
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[20], [21], [25] and [26]) for more details and further references. There-
fore we may except to generalize some results which are valid in a real
hypersurface to a semi-invariant submanifold. From this point of view, a
semi-invariant submanifold with higher codimension of a complex space
form are investigated by several authors ([16], [23], [24]) in connection
with the shape operator and the induced almost contact metric struc-
ture. In particular, a semi-invariant submanifold of codimension 3 in a
complex space form are studied in ([12], {13], [28]) by using properties
of the third fundamental form of M and induced almost contact metric
structure.

The main purpose of the present paper is to treat a semi-invariant
submanifold of codimension 3 in a complex space form M, ;(c) and
give sufficient conditions for the submanifold to be a real hypersurface
of M,(c). The model for this note can he found in [14] by Ki, Song,
Takagi.

In §1, we give some preliminaries and derive a series of useful for-
mulas when the ambient space is a Kaehlerian manifold. In §2 we also
derive the structure equations and | other fundamental properties on the
semi-invariant submanifold when M is a complex space form and state
important known results on a real hypersurface of a complex space form
without proof.

In §3, we prove a generalization of Lawson’s theorem([17]) to codimen-
sion 3 on a compact minimal semi-invariant submanifold of a complex
projective space P,.1C by using the reduction theorem.

Finally §4 is devoted to study of the third fundamental forms in a
minimal semi-invariant submanifold satisfying dn = 26w for a certain
scalar # # £ and # # $32=1 where w(X,Y) = g(X, ¢Y) for any vectors
X and Y. Then we prove that M is a real minimal hypersurface in a
complex space form M, (c).

1. Preliminaries

Let M be a real 2(n + 1)-dimensional almost Hermitian manifold
equipped with almost Hermitian structure J and a Riemannian metric
tensor G and covered by a system of coordinate neighborhoods {W;y4}.
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Let M be a real (2n — 1)-dimensional Riemannian manifold covered
by a system of coordinate neighborhoods {V; 2"} and immersed isomet-
rically in M by immersion ¢ : M — M. Throughout the present paper
the following convention on the range of indices are used, unless other-
wise stated:

AB,---=12--,2n+2:4,j,---=12,--,2n~1.

Henceforth the summation convention will be used with respect to those
systems of indices. We respect the immersion ¢ locally by y* = y*(z")
and B; = (B;4) are also (2n— 1)-linearly independent local tangent vec-
tors of M, where B;* = 8;y* and 8; = 52;. Then mutually orthogonal
unit normals, C, D and E may be chosen and the induced Riemannian
metric tensor ¢ with components g;; on M is given by g;; = G(B;, B;)
since the immersion 7 is isometric.

NAS is well-known, a submanifold M of an almost Hermitian manifold
M is said to be a C' R submanifold ([1], [2]} if it is endowed with a pair of
mutually orthogonal complementary differentiable distribution (T,7)
such that for any x € M we have JTy = Ty, Jo~ C Tt M, where T,- M
denotes the normal space of M at z.

In particular M is said to be a semi-invariant submanifold([12], [13])
provided that dimT" =1 or to be CR  submani fold with CR dimension
n — 1([16]). In this case the unit normal vector field in JT is called a
distinguished normal to the semi-invariant submanifold. Thus we have
(see [14])

(1.1) JB; =9"B, +&C, JC=-¢"B,, JD=-E, JE=D

in each coordinate neighborhood, where we have put #;; = G(JB;, B;),
£; = G(JB;, C), £" being associated components of £,. By the Hermitian

property of J, it is clear that $;; is skew-symmetric. A tensor field of
type (1.1) with components @;* will be denoted by ®. Moreover, the
Hermitian property of J implies
&7, = —§;" + £:€",
(1.2) e =0, &7 =0,
9rs®; 0% = g5 — &6, &€ =1,
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that is, the aggregate (&, £, g) defines an almost contact metric structure.

Denoting by V; the operator of van der Waerden-Bortolotti covariant
differentiation with  respect to the induced Riemannian metric, equation
of Gauss for M of M

(13) VjB,' = AﬁC + KjiD + LﬁE,

where Aj;, K;; and L;; are components of the second fundamental forms
in the direction of normals C, D, E respectively. Equations of Weingarten
are given by

V,C = —Athh +1;D 4+ m;E,
(1.4) V;D = —thBh —L;C+ n; K,
VjE = —Lthh et ij’ — njD,

where A = (A;"), Ay = (K;") and Ay = (L"), which are related by
Aj' = jrg-,'r,qu; = jrg‘ir and Lj.,' = Ljrgir reSpectively, and lj,mj
and n; being components of the third fundamental forms.

In the sequel, we denote the normal components of V;C by V;1C.
The normal vector field C is said to be parallel in the normal bundle if
we have V;1C = 0, namely, [; and m; vanish identically.

In what follows we specialize to the case of an ambient Kaehlerian
manifold M, that is, J is parallel. Then, by differentiating (1.1) covari-
antly along M and by comparing the tangential and normal parts, we
get {see [28])

(1.5) Vi@ = — 456" + AR,
(1.6) Vi = ~A;®",
(17) KJ = —Ljr@ir et mj&,

(1.8) Lji = Kjr@ir +1;&.
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ReEMARK. To write our formulas in a convention form, in the sequel
we denote by o = Aj,;gj&i,h = TTA,k = T’I‘A(g},l = TT‘A(g),H(g) =
Aj,;Aji, K(g) = Kjini and L(g) = th,sz"

From (1.7) and (1.8) we have

(]_.9) Kjr‘fr = —my, Ljrfr = lj?

(1.10) meE" =k, L& =1,

where we have used (1.2). Transforming (1.8) by @’ and using (1.2)
and (1.7), we obtain

—Ki —mi&, = K. @, P + §P, 17,

which unable us to obtain g€ — Mk = &Prrl™ — EDPsrl". Thus, it
follows that '

(1.11) ;" = my + k¢,
which together with (1.2) yields

Taking the inner product (1.11) with 7 and making use of (1.10), we
get

(1.13) ml” = —kl.

If we transform (1.7) and (1.8) by Li* and take account of (1.7), (1.8)
itself and (1.9), then we have respectively

(1.14) Kj-,-Lz'r + K@T-Ljr = —(ljm,- + limj),

1.15 L2 — K2 =Lil; — m.m,.
2 3 v 7

Now, we put U; = £"V.£;. Then U is orthogonal to the structure
vector . From (1.2) and (1.6), we see that

(116) @err = Aj.,-fr - Olfj.

Differentiating this covariantly along M and using (1.5) and (1.6), we
find

(1.17) fj(AkTUT-FVkOf)-I-@jrkaT = ETVkAJ-T—-AjrAkSQV“’—i-aAkT@j’".
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2. Semi-invariant submanifolds of codimension 3 in a com-
plex space form

In the rest of this paper we shall suppose that M is a Kaehlerian
manifold of constant holomorphic sectional curvature ¢, which is called
a complez space form and denoted by M, 1{¢c). The curvature tensor of
Mny1(c) is given by

c
Rpcea = Z(GDAGCB — GeaGpg +JpaJes — Jcadps — 2JpcJBa)-

Using this and (1.1), equations of the Gauss and Codazzi are given
respectively by

c
Ryjin =Z(gkh9ji — ginGki + Pen®ji — PinPri — 2P ;Pin)
(21) + ApnAji — AjnAri + KenKji — Kjn K
+ LgpLj; — LjpLgi,

VkAﬁ - VjAk@' :leji - lekz' + kaji — mij,;

2.2
(2.2) + E(ékgpji —&iPri — 262'4515.1))

(23) kaji — VJ'KM = lJAk-,, — lkAj-i + niji - niji;

(24)  ViLji — VjLgi = miAxi — miAji + 1K — ne K,

where Rjj;, is covariant components of the Riemann-Christoffel curva-
ture tensor of M, and those of the Ricci by

(2.5) Vil — Vil = Ajr K" — Ak K57 + nemy — nyme,

(2.6) Vim; — Vymyg = Aerkr — ArrL;" + 5l —-.nklj,

c

(2.7) Vin; —Vng = K L™ — Kir L™ + Lymy — lymy + 9

B;.
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Let 5;; be the components of the Ricci tensor § of M. Then the Gauss
equation (2.1) gives

c

(2.8) Sji = J{(2n+1)g;i~3¢;&}+hAsi— Aji® +h K ji— K5 HLji— L;i?,
which implies that the scalar curvature p of M is given by

(2.9) ’ p:C(n2—1)+h2—H(2)+k2—K(2)+l2 —L(g).

If we take account of (1.9) and (1.10), then the above equation can
be written as

(210) p=c(n®— 1)+ h* - Hpy — | Kji — k&;&]12 = || Lz — 18667,

where || F||? = g(F, F) for any tensor field F on M.

In the following we need the following definition for the later use. The
normal connection of a semi-invariant submanifold of codimension 3 in
a complex space form is said to be L-flat if it satisfies dn = Sw, that is,
Vin; — Vin; = £@;;, where w(X,Y) = g(X, ®Y') for any vectors X and
Y on M(p514 [30]).

From a semi-invariant submanifold with L-flat normal connection, it
is known that

THEOREM A[12]. Let M be a semi-invariant submanifold of codi-
mension 3 with L-flat normal connection in a complex projective space
P, 1C. If the structure vector £ is an eigenvector of the shape operator

in the direction of the distinguished normal, then we have Ay = A3y =
0.

On the other hand, Takagi([26]) classified all homogeneous real hy-
persurfaces of P,C as six model spaces which are said to be A;, Ay, B,
C, D and E, and Cecil-Ryan([5]) and Kimura([15]) proved that they are
realized as the tubes of constant radius over Kaehlerian submanifolds.
Namely, he proved the following :

THEOREM B(26]. Let M be a homogeneous real hypersurface of P,C.
Then M is locally congruent to one of the followings:
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(A1) a geodesic hypersphere, that is, a tube over a hyperplane
n—1%,
(As) a tube over a totally geodesic P,C(1 < k <n —2),
(B) a tube over a complex quadric Qrn_1,
(C) a tube over P,C x Pn-1C and n(> 5) is odd,
2

(D) a tube over a complex Grassman G25C and n =9,

{E) tube over a Hermitian symmetric space SO(10)/U(5) and
n = 15.

Also Berndt([3]) showed that all real hypersurfaces with constant prin-
ciple curvatures of a complex hyperbolic space H,C are realized as the
tubes of constant radius over certain submanifolds when the structure
vector £ is principal. Nowadays in H,C they are said to be of type Ao,
A;, Ay, and B. He proved the following:

THEOREM C[3]. Let M be a real hypersurface of H,C. Then M has
constant principal curvatures and £ is principal if and only if M is locally
congruent to one of the following :

(Ao) a self-tube, that is, a horosphere,

(A1) a geodesic hypresphere or a tube over a hyperplane H, _1C,
(Az) a tube over a totally geodesic HiC (1 <k <n—2),

(B) a tube over a totally real hyperbolic space H, R.

For a compact minimal real hypersurface of a complex projective space
the following theorem by Lawson is fundamental.

THEOREM D[17]. Let M be an n-dimensional compact, minimal real
hypersurface of P with Fubini-Study metric of constant holomor-
phic sectional curvature 4. If the scalar curvature of M is greater than
or equal to (n + 2)(n — 1), then M is an M  for some p,q satisfying
p+g=m--1, wherem = —"—'2"—1

3. Compact minimal semi-invariant submanifold

Let M be a minimal semi-invariant submanifold of codimension 3 in
a complex projective space P, 1C with constant holomorphic sectional
curvature 4.
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From (1.5) and (1.6), we have

(3.1) ViV;E = —Aj2€" — (ViAy) 9.
Then (2.10) is reduced to

(3.2) p=4(n*— 1)~ Hpo — K2y — Loy

Transvecting £* to (1.14) and using (1.9) and (1.10) with k =1 = 0,
we find

(3.3) Ljrlr + Kj,-mr = (.

On the other hand, multiplying (2.2) with #* and summing for k and
i , and taking account of (1.7)~(1.10) and (3.3), we have

(Vi A ;)" = —2K;;m"™ — 2(n — 1)¢;,

which together with (3.1) yields

V& = — A28 + 2K om” + 2(n — 1)&;.
Hence we obtain

EViV;¢ = 2(n — 1) - 2mym” — A5 %7¢°
by virtue of (1.9). o . _

Since we have div U = (V;£)(V*&?) + §7V;V;£, the above equation
implies
V& + Vi&;||> = 2divU + 2{Hs) — 2(n — 1)} + dm,m".

Thus we have

1
(3.4) divU = §||Ag15 — @A||? — Hiy +2(n— 1) — 2mym”

since M is minimal.
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Using (2.10), the equation (3.4) turns out to be
. 1
(3.5) divU = 5||A¢—¢A||2+p—2(n—1)(2n+1)—2m,.m"+K(2)+L(2).
By the way, we have
(3.6) 1K ji +mjéi +magsl|* = Kay — 2mem’.

Further, suppose that p > 2(n — 1}(2n + 1). Then we have from the last
two relationships

(3.7) AD = DA, Ag =0,

(3.8) Kji +m;& +mi§; =0

because M is compact.

Multiplying (3.8) with K7* and summing for j and 7 and using (1.9),
we find K(y) = 2m,m". '

Since it is, using (1.15) and A(gy = 0, seen that K = m,m” - L.I",
it follows that Ky = 0 and hence A(3) = 0, and I; = m; = 0, that is,
the distinguished normal is parallel in the normal bundle.

Let No(p) = {n € T, (M)|A, = 0} and Ho(p) the maximal J-
invariant subspace of Np(p). Since we have Ay = Az = 0, the or-
thogonal complement of Hp(p) is invariant under parallel translation
with respect to the normal connection because of VjLC =0.

Thus by the reduction theorem in ([8], [23]) we have

THEOREM 3.1. Let M be a real (2n — 1)-dimensional compact, mini-
mal semi-invariant submanifold in a complex projective space P,1C. If
the scalar curvature > 2(n — 1)(2n + 1), then M is a homogeneous type
A1 or Az.

4, The third fundamental forms in a minimal semi-invariant
submanifold

In this section we shall suppose that M is a minimal semi-invariant
submanifold of codimension 3 in a complex space form M,, 1 (c) and that
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the third fundamental form n satisfies dn = 28w for a certain scalar #
on M, namely,

(4.1) an.; - ij = 29@_5.5.
Then we have from (2.7)
KjTLiT — K;'TLJ'T + ljmz- -_ limj = —-2(9 — z)éﬁ,
or, using (1.14)
- c
(4.2) Kj'rL-i +Ijm; = —(8 — Z)@ji,
which together with (1.9} and (1.10) gives
(4.3) Kjl” =0, Ljym™ =0,

Multiplying (4.2) with @7 and summing for § and 7, and taking ac-
count of {1.8), (1.9) and (1.12), we find

(4.4) Ly =2(n—1)(6 — z).

We notice here that 6 is constant if n > 2 ([14]). Transvecting (4.2)
with m* and ¥, and making use of (1.11), (1.12) and (4.3), we find
respectively
c

0 -7

mem™); =0, (6— g — LN = 0.

Now, let £ be a set of points such that [.I" # 0 on M and suppose
that € is non-empty. Then we have

c c
(45) m'r‘mr = 9 - Z; lrlr = 8 — Z

because of (1.12) on . In what follows we discuss our arguments on the
open subset 2 of M. Transforming (4.2) by &* and taking account of
(1.7} and (1.12), we find

(46)  Kgp® & (Kjrm") + il = (0= ) g5 — i),
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from which, taking the skew-symmetric part,
{ijrmr - §kKj,,.mr =0.

Thus, it follows, using (1.9), that K;m" = —(m,m"){;. Therefore (4.6)
turns out to be

c
(4.7) Kji® = (0~ 79—kt

by virtue of {4.5). Differentiating this covariantly along €2, we find
(4.8) Kjrkair + K,;rkajr + Ijvkli + livklj =0,

from which, taking the skew-symmetric part with respect to indices &
and j and making use of (2.3) and (2.5),

Kjrkair — KkerKir + ljvkli — lijl-,'
+ K" (1 Akr — e Ajr + i Ljr — nyLiy)
+ (A Kir — A" Kjr + em; —nymy) =0
for any indices k, j and i. Thus, interchanging indices & and %, we have
KjTVz—Kkr - K,'TVJ'K&-;- + ljvilk - Iivjlk
+ U Ay K" — LA K" +n Ky Ly,
— anerir -t lk(KirAjr — KjrAi-r +nmy; — njmi) =0.
Hence, if we use (1.14), (2.3), (2.5), and (4.2), then we obtain
Kjrkair — Kl-’"VkKjr + ljvkl@- — livklj
+ 20 A K™ — 20 A KT+ 2(6 — E)nkqu,- =0,
Adding this to (4.8), we obtain
(49) K ViKir + 1i(Vili + ArrKiT) — LA K;7 + (6 — E)nkqsﬁ =0.
Since we have (1.8), (4.3) and (4.7), by transforming K7, we have
(0= 2)(ViKhs =L+l —LiAnk) — (I ViKir) + (Arl7inls = 0.

First of all, we prove

LEMMA 4.1. Let M be a real (2n — 1)-dimensional (n > 2) semi-
invariant minimal submanifold of codimension 3 in a complex space form
Mpia(c). If it satisfies dn = 20w and @ # §, then V;+C = 0, namely,
the distinguished normal is parallel in the normal bundle.
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PROOF. Because of (1.9), (1.10), (1.15) and (4.7), we have
(4.11) Lyl = (0 3)¢.
Differentiating the first equation of (4.3) covariantly along €2, we find
U'ViKjr + Kj"Vil, =0,

which together with (4.3) implies that (VgK;;)l/l* = 0. Thus if we
transvect I* to (4.10) and make use of (1.10), (4.5) and (4.11), then we
obtain

(412) (0 = DUVREG + Akl = (6= ) (Ajk i)} = 0.

If § = £, then Lj; = 0 by virtue of (4.4). Hence (4.2) means I; =
m; = 0 and consequently V;~C = 0. Thus we may only consider the
case where § # £.

If we take the skew-symmetric part of (4.12) and use (2.3) and (4.11),
then we have

L ARel™ — L Ajel” =0,

which implies
(4.13) A" = al;

for some function ¢ on Q. Because of (4.12) and (4.13), the equation
(4.10) is reduced to

(414) (8 — ) (VieKji —nuLy; — LAz — LAg) + 20011 = 0.
4 J 7 J 7 2

Since we have K;.£" = —m;, by differentiating covariantly along {2
and making use of {(1.1), (1.8), (1.9), (1.10) and (4.14), we find

(4.15) Vkmj = —nklj - Ak,.LjT.

If we differentiate (1.10) with k& = 0 covariantly and take account of
(1.6), (1.9), (1.12) and (4.15), we obtain

(4.16) Aplm =0,
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Thus, (4.14) is reduced to
(4.17) VieKji = niLyi + LAz, + L A
Substituting (4.17)} into (4.9), we have
K e L™+ L(Vils + A Ki7) + (6 — g)nk;bj,- =0,

which transvect I’ and using (1.11) with k& = 0, (4.3) and (4.5),
(4.18) Vil = npmy — A, K7

From this and the first equation of (1.9), we verify that

(4.19) Ajpm” = 0.

Differentiating (4.16) covariantly along 2 and using (4.18) and (4.19),
we find

(4.20) (ViAj ™ = Ajp Ap K™ =0,
from which, taking the skew-symmetric part and using (1.11}, (2.2),
(4.3), (4.11), and (4.16), (6 — £)(mx€; — m &) = 0. Since 8 # 3, it

follows that m; = 0 and hence I; = 0 because of (1.12). This completes
the proof. a

We now continue, our arguments under the same hypotheses as in
Lemma 4.1. Then we have {; = m; = 0. Thus, (2.2), (2.3), (2.5),
{2.6), (4.2) and (4.6) turn out respectively to

C
(4.21) vaji - VjAkg’ = Z(fkéji - ‘Ej@ki - Q‘Eigpkj):
(4.22) ViKji — ViKg = nLji — ny L,

(4‘23) AeriT - AirKjr = 0, Aj.,nLi'r — At-.,.Ljr = 0,
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(4.24) K Li" = —(0— E)QSJ”"’

(4.25) K% = (8- 2)(93‘1‘ — &)

Since we have Kj;,.£” = 0, by differentiating covariantly along M and
using (1.6) and (1.8) with {; = 0, we find

(4.26) (VeKir )€™ = —Lip Ax".
Differentiating {4.25) covariantly along M and using (1.6}, we have
c _
(427) Kjr(kaw) + Kir(kajr) = (9 — Z)('EjAkrdsiT + fiAkréjr).

Using the quite same method as that used to (4.9) from (4.8), we can
derive from (4.27) the following :

QKjrkair =(0 — E){an@j + (AiréjT — Aj,—dsir)fk
(4.28) + (Apr®;” — Ajr®r7)&
+ (Ak'r@i'r + Airdskr)fi}u
where we have used (4.22) and (4.24).

In the following, we are going to prove A(z) = 0. By means of (4.25),
we may only consider the case where § — 7 # 0 because it is already
seen that ¢ is constant. By (4.22) we can, using k = [ = 0, verify that
V,K;” = Ljyn”. Thus, multiplying (4.28) with ¢** and summing for &
and i, we find

K Lyon® = (8 — %)(cbrjnf + 6 ALS,T),

which together with (4.24) implies that £*A;,®;" = 0 and hence

(4.29) A8 = ;.
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Therefore, if we transvect (4.28) with &/ and take account of (1.9} and
(4.29), then we obtain

(430) Ajr@iT + Air@jr =0.

From this and {4.21), we can prove the followings (see [9]) :

¢
{4.31) Aji* = adj + Z(gji — &),

[
(4.32) Vidji = —Z(ﬁjqjki +£iPr;)-
By means of (4.30), the equation (4.28) can be written as
' c
K"V Ky = (80— Z)(”k@j + &k Air®;" + L AR DT )

Transforming by K7 and using (1.8), (4.23), (4.25) and (4.26), we
obtain

{4.33) VK =ngly — §eAjr Ly — AR L™ — § A LT

Differentiating (1.8) with {; = 0 covariantly and using (1.5), (1.7) and
{4.33), we have

(4.34) ViLji = —npKji + E A K7 + §AR K" +ARKET,
which together (1.9) with kK ={ = 0 and (4.29) implies that
(4.35) Tr(AAg) =0, Tr(A*Ap)=0

because of (4.21).

On the other hand, we have A5{ = 0 and TrA(y) = 0 and (4.25),
the shape operator A(z) has at most three distinct constant eigenvalues
0,,/0 — %, —+/8 — § with multiplicities 1,7 — 1,» — 1 respectively.

By (4.29), (4.30) and (4.31), we also see that A has at most three
distinct constant eigenvalues o, (o + vD)/2, (a ~ v/D)/2 with multiplic-
ities 1,7, s respectively, where D = o2 +¢,7 + s = 2n — 2.
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Since we have AA(g) = A2y 4, it follows that A and Ay are diagonal-
izable at the same time. Because of (4.34), we have (§ — $)r(a? +¢) = 0.
Thus s = 2(n — 1) and consequently A has two constant eigenvalues
a and (o — v/D)/2 with multiplies 1,2(n — 1) respectively. Since M is
minimal, it follows that

(4.36) na = (n— 1)VD.

Differentiating (4.33) covariantly along M and using (1.6), (1.9), (4.31),
{4.32) and (4.34), we find

c
Vi VK = (Vang) Ly — Z(Kkifjﬁh + Kjn€x&i + 2Kn€5€x)

+ Bhji — (€€ Apr K7 + Ex&i Ajr Kn™ + 26561 Ain Ki™)
+ (Aps®;°)(Arr L") + (ArsPi®)(Air L7} + (Ars®i®) (Ajr L")
where Bh,kji is a certain tensor with Bhka' = Bkhj'i-

Multiplying the last equation with #** and summing for A and k, and
making use of (1.2), (1.7}, (1.8), (4.1), (4.23), (4.30) and (4.31), we find

PV VLK = {2(n — 1)6 - ’S‘}Lji - ad LT,
or, using the Ricci identity for A,
(4.37) ®"*(RprinKi" + Rupir K;7) = —{c — 4(n — 1)8}L;; + 2aA; L.
On the other hand, we have from (2.1)
M Ryin = (cn + g)spm- — 20 A B, + 4Kn L7,

where we have used (1.8), (1.9), (4.30) and (4.31), which together with
(1.8) and (4.25) yields

PK! (RkurKjT + Rk,{erir) = {89 - (27’2, + 3)C}Lj1' - 40tAj,~Lir.
From this and (4.37), it follows that

(4.38) 3aA;, L7 = {2(n +1)8 — (n + 2)c} Ly,



666 Seong-Cheol Lee, Seung-Gook Han, and U-Hang Ki

which implies
3a(Aji — af;6) = {2(n +1)8 — (n + 2)cHgji — §5&:).
If we take the trace of this, then we obtain
(4.39) ~3a® = 2(n — 1){2(n + 1)8 — (n + 2)c},

which together with (4.37) implies that

cdn—1
4.40 = - .
( ) 8 42n -1

From this and Lemma 4.1, we have

LEMMA 4.2. Let M be a real (2n — 1)-dimensional semi-invariant
minimal submanifold of codimension 3 in a complex space form M, 1(c).
If it satisfies dn = 20w for a certain scalar & # £ and 0 # ggz:i , then
we have Ay = A(z) = 0.

REMARK. It is proved in ([14]) that the following : Let M be a real
(2n — 1)-dimensional (n > 2) semi-invariant submanifold of codimension
3 satisfying dn = 20w for a certain scalar § < § and V;8fC =0in
a complex projective space P,+1C. Then the same conclusion as that

Lemma 4.2 are valid.

By the reduction theorem in ([8], {23]) and by Lemmad4.1 and Lemma4.2,
we have

THEOREM 4.3. Let M be a real (2n — 1)-dimensional (n > 2) semi-
invariant minimal submanifold in a complex space form M, 1(c). If the
third fundamental form n satisfies dn = 20w for a certain scalar 8 # £
and § # £22=1 where w(X,Y) = g(X,PY) for any vector X and Y
on M, then M is a minimal real hypersurface in a complex space form

M,(c).

Owing to Theorem B, C and Theorem 4.3, we have
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THEOREM 4.4. Let M be a real (2n — 1)-dimensional (n > 2) semi-
‘invariant minimal submanifold in a complex space form M,.(c) such
that the third fundamental tensor satisfies dn = 26w for a certain scalar
0,6 # § and 6 # $£32=2. Then M has constant principal curvatures cor-
responding the shape operator in the direction of distinguished normal
and the structure vector £ is an eigenvector of A if and only if M is locally
congruent to a homogeneous minimal real hypersurface of M, (c).
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