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ON MAXIMAL OPERATORS BELONGING
TO THE MUCKENHOUPT’S CLASS A1

Choon-Serk Suh

Abstract. We study a maximal operator defined on spaces
of homogeneous type, and we prove that this operator is of
weak type (1,1). As a consequence we show that the maximal

operator belongs to the Muckenhoupt’s class A1.

1. Introduction

In this paper we first introduce a space of homogeneous type X,
which is a more general setting than a Euclidean space Rn, and we
also consider the generalized upper half-space X × (0,∞). Then we
shall consider a maximal operator Mp defined on X as follows. For
a measurable function f defined on X × (0,∞) and x ∈ X, we define
a maximal function of f , as

Mp(f)(x) = sup
x∈B

(
1

µ(B)

∫
T (B)

|f(y, t)|p dµ(y)dt

t

)1/p

, 1 ≤ p < ∞,

where the supremum is taken over all balls B containing x. Here µ
denotes surface area measure on X, and T (B) denotes the tent over
B.
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In this paper we study that a new kind of a maximal operator Mp

gives rise to weights in A1 [4]. To prove this we need to prove that
this operator Mp is of weak type (p, p) for some p, 1 ≤ p < ∞.

2. Some basic notations and preliminary materials

We begin by introducing the notion of a space of homogeneous
type [1]: Let X be a topological space endowed with Borel measure
µ. Assume that d is a pseudo-metric on X, that is, a nonnegative
function on X × X satisfying

(i) d(x, x) = 0; d(x, y) > 0 if x ̸= y,
(ii) d(x, y) = d(y, x), and
(iii) d(x, z) ≤ K(d(x, y)+d(y, z)), where K is some fixed constant.

Assume further that

(a) the balls B(x, ρ) = {y ∈ X : d(x, y) < ρ}, ρ > 0, form a basis
of open neighborhoods at x ∈ X,

and that µ satisfies the doubling property:

(b) 0 < µ(B(x, 2ρ)) ≤ Aµ(B(x, ρ)) < ∞, where A is some fixed
constant.

Then we call (X, d, µ) a space of homogeneous type.
Property (iii) will be referred to as the “triangle inequality.” Note

that property (b) implies that for every C > 0 there is a constant
AC < ∞ such that

(1) µ(B(x,Cρ)) ≤ ACµ(B(x, ρ))

for all x ∈ X and ρ > 0.
Now consider the space X × (0,∞), which is a kind of generalized

upper half-space over X. We then define the analogue of nontangen-
tial or conoical regions as follows. For x ∈ X, set

Γ (x) = {(y, t) ∈ X × (0,∞) : x ∈ B(y, t)}.
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For any set Ω ⊂ X, the tent over Ω is the set

T (Ω) = {(x, t) ∈ X × (0,∞) : B(y, t) ⊂ Ω}.

It is then very easy to check that

T (Ω) = (X × (0,∞)) \
∪

x̸∈Ω

Γ (x).

For a measurable function f defined on X × (0,∞) and x ∈ X,
we define a maximal function of f , as
(2)

Mp(f)(x) = sup
x∈B

(
1

µ(B)

∫
T (B)

|f(y, t)|p dµ(y)dt

t

)1/p

, 1 ≤ p < ∞,

where the supremum is taken over all balls B containing x.

3. Main result

The following covering lemma can be found in [1, p.69].

Lemma 1. Let Ω be a bounded subset of X. Suppose that
ρ(x) is a positive number for each x ∈ Ω. Then there is a (finite or
infinite) sequence of disjoint balls {B(xi, ρ(xi)}, xi ∈ Ω, such that

Ω ⊂
∪
i

B(xi, 4Kρ(xi)),

where K is the constant in the triangle inequality. Furthermore,
every x ∈ Ω is contained in some ball B(xi, 4Kρ(xi)) satisfying
ρ(x) ≤ 2ρ(xi).

Lemma 2. The maximal operator Mp, defined as in (2), is of
weak type (p, p) for some p, 1 ≤ p < ∞.
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Proof. Fix λ > 0, set

Ωλ = {x ∈ X : Mp(f)(x) > λ}.

For each x ∈ Ωλ, let

ρ(x) = sup
{

ρ > 0 :(
1

µ(B(x, ρ))

∫
T (B(x,ρ))

|f(y, t)|p dµ(y)dt

t

)1/p

> λ

 .

Thus for each x ∈ Ωλ, we have ρ(x) > 0 and

(3)
1

µ(B(x, ρ(x)))

∫
T (B(x,ρ(x)))

|f(y, t)|p dµ(y)dt

t
≥ λp.

Assume first that Ωλ is bounded. Apply Lemma 1 to the balls
B(x, ρ(x)) to obtain a sequence of disjoint balls B(xi, ρ(xi)), so that

Ωλ ⊂
∪
i

B(xi, 4Kρ(xi)).

Then

µ(Ωλ) ≤
∑

i

µ(B(xi, 4Kρ(xi)))

≤ A4K

∑
i

µ(B(xi, ρ(xi))) (by (1))

≤ A4K

λp

∑
i

∫
T (B(xi,ρ(xi)))

|f(y, t)|p dµ(y)dt

t
(by (3))

≤ A4K

λp

∫
X×(0,∞)

|f(y, t)|p dµ(y)dt

t

= A4K(||f ||p/λ)p,
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since the balls B(xi, ρ(xi)) are disjoint. Thus Mp is of weak type
(p, p).

Assume second that Ωλ is not bounded. Fix a ∈ X and R > 0.
Then Ωλ∩B(a,R) is a bounded set, and so, as in the above argument,
we can apply Lemma 1 to the balls {B(x, ρ(x)) : x ∈ Ωλ ∩ B(a,R)}
to obtain

µ(Ωλ ∩ B(a,R)) ≤ A4K(||f ||p/λ)p.

Letting R → ∞ we obtain the same weak type estimate as before.
Thus the proof is complete. ¤

We now state and prove the main result of this paper.

Theorem 3. Let Mp be defined as in (2) and 1 ≤ p < ∞.
Then Mp is in the class A1 [4], that is, there is a constant C such
that

1
µ(B)

∫
B

Mp(f)(x)dµ(x) ≤ C inf
x∈B

Mp(f)(x),

where the infimum is taken over all balls B containing x.

Proof. Let

M1(u)(x) = sup
x∈B

1
µ(B)

∫
T (B)

u(y, t)
dµ(y)dt

t
,

where u(y, t) = |f(y, t)|p. For any ball B in X, decompose

u(y, t) = u1(y, t) + u2(y, t),

where u1(y, t) = u(y, t)χT (3B)(y, t). Since M1 is of weak type (1, 1)
by Lemma 2, it follows from the Kolmogorov’s inequality [6] that∫

B

M1(u1)(x)1/pdµ(x)

≤ Cµ(B)1−1/p

(∫
X×(0,∞)

u1(y, t)
dµ(y)dt

t

)1/p
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for some constant C, that is, for any x ∈ B

1
µ(B)

∫
B

M1(u1)(x)1/pdµ(x)

≤ C

(
1

µ(B)

∫
X×(0,∞)

u1(y, t)
dµ(y)dt

t

)1/p

≤ C

(
1

µ(3B)

∫
T (3B)

u(y, t)
dµ(y)dt

t

)1/p

≤ CM1(u)(x)1/p.

Thus

(4)
1

µ(B)

∫
B

M1(u1)(x)1/pdµ(x) ≤ C inf
x∈B

M1(u)(x)1/p.

On the other hand, for any x, z ∈ B we have

(5) M1(u2)(x) ≤ CM1(u2)(z).

In fact, if M1(u2)(x) ̸= 0, then clearly z ∈ 3B. Thus

M1(u2)(x) ≤ sup
x∈B

1
µ(B)

∫
T (3B)

|u2(y, t)|dµ(y)dt

t

≤ CM1(u2)(z),

as desired. Thus it follows from (5) that

1
µ(B)

∫
B

M1(u2)(x)1/pdµ(x) ≤ C inf
z∈B

M1(u2)(z)1/p(6)

≤ C inf
z∈B

M1(u)(z)1/p.

Since

M1(u)(x)1/p ≤ C
(
M1(u1)(x)1/p + M1(u2)(x)1/p

)
,



On maximal operators belonging to the Muckenhoupt’s class A1 43

it follows from (4) and (6) that

1
µ(B)

∫
B

M1(u)(x)1/pdµ(x)

≤ C

µ(B)

(∫
B

M1(u1)(x)1/pdµ(x) +
∫

B

M1(u2)(x)1/pdµ(x)
)

≤ C inf
x∈B

M1(u)(x)1/p,

that is, M1(u)1/p = Mp(f) ∈ A1. The proof is therefore complete.¤
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