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ON MAXIMAL OPERATORS BELONGING
TO THE MUCKENHOUPT’S CLASS A4,

CHOON-SERK SUH

ABSTRACT. We study a maximal operator defined on spaces
of homogeneous type, and we prove that this operator is of
weak type (1,1). As a consequence we show that the maximal
operator belongs to the Muckenhoupt’s class A;.

1. Introduction

In this paper we first introduce a space of homogeneous type X,
which is a more general setting than a Euclidean space R", and we
also consider the generalized upper half-space X x (0,00). Then we
shall consider a maximal operator M, defined on X as follows. For
a measurable function f defined on X x (0,00) and = € X, we define
a maximal function of f, as

1/p
du(y)dt

; , 1 <p<oo,

M) = swp (oo [ s op

where the supremum is taken over all balls B containing . Here p
denotes surface area measure on X, and T'(B) denotes the tent over
B.
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In this paper we study that a new kind of a maximal operator M,
gives rise to weights in A; [4]. To prove this we need to prove that
this operator M), is of weak type (p,p) for some p,1 < p < co.

2. Some basic notations and preliminary materials

We begin by introducing the notion of a space of homogeneous
type [1]: Let X be a topological space endowed with Borel measure
(. Assume that d is a pseudo-metric on X, that is, a nonnegative
function on X x X satisfying

(i) d(z,z) = 0;d(z,y) > 0 if z # y,
(ii) d(z,y) = d(y,z), and

(iii) d(z,z) < K(d(z,y)+d(y, z)), where K is some fixed constant.

Assume further that

(a) the balls B(z,p) ={y € X : d(z,y) < p}, p > 0, form a basis
of open neighborhoods at x € X,

and that p satisfies the doubling property:

(b) 0 < u(B(z,2p)) < Au(B(z,p)) < oo, where A is some fixed
constant.

Then we call (X,d, 1) a space of homogeneous type.

Property (iii) will be referred to as the “triangle inequality.” Note
that property (b) implies that for every C' > 0 there is a constant
Ao < oo such that

(1) u(B(z,Cp)) < Acp(B(z, p))

for all z € X and p > 0.

Now consider the space X x (0,00), which is a kind of generalized
upper half-space over X. We then define the analogue of nontangen-
tial or conoical regions as follows. For z € X, set

I'z) ={(y,t) € X x (0,00) : x € B(y,1)}.
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For any set {2 C X, the tent over 2 is the set
T(2)={(x,t) € X x (0,00) : B(y,t) C $2}.

It is then very easy to check that

T(£2) = (X x (0,00)\ | J I'(x).

T2

For a measurable function f defined on X x (0,00) and =z € X,
we define a maximal function of f, as

(2)

1/p
My(f)(x) = sup (ﬁ /T(B) \f(%ﬂ!”M) , 1<p<oo,

where the supremum is taken over all balls B containing x.

3. Main result

The following covering lemma can be found in [1, p.69].

LEMMA 1. Let {2 be a bounded subset of X. Suppose that
p(z) is a positive number for each x € (2. Then there is a (finite or
infinite) sequence of disjoint balls { B(x;, p(x;)},x; € 2, such that

0c UB(%AKP(%));

where K is the constant in the triangle inequality. Furthermore,
every © € {2 is contained in some ball B(x;,4Kp(x;)) satisfying

plx) < 2p(x1).

LEMMA 2. The maximal operator M, defined as in (2), is of
weak type (p,p) for some p,1 < p < c0.
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Proof. Fix A > 0, set
2 ={z e X : M,(f)(z) > A}

For each x € (2, let

p(x) :sup{p>0:

1/p
1 pdu(y)dt
<M(B(CL‘7P)) /T(B(x,p)) 175, 2)] t ) ~ /\} '

Thus for each x € (2, we have p(x) > 0 and

BT T )it
@ B @) /T(B(I,p(@))'f(y’”‘ R

Assume first that (2, is bounded. Apply Lemma 1 to the balls
B(z, p(x)) to obtain a sequence of disjoint balls B(z;, p(x;)), so that

2\ C UB(xi,éLKp(xi)).

Then

n(§2y) < Z,U (zi, 4K p(z4)))

< A4KZ,U (i, p(2))) (by (1))
A duly)dt
< A g )P )
T(B(xsp(z: >>> t
<

A d dt
;;‘ / If(y,t)|pM
X x(0,00)

t
= Aax(|[fllp/ M),
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since the balls B(z;, p(z;)) are disjoint. Thus M, is of weak type

(p,p)-
Assume second that (2, is not bounded. Fix ¢ € X and R > 0.

Then 2\NB(a, R) is a bounded set, and so, as in the above argument,
we can apply Lemma 1 to the balls {B(z, p(x)) : z € 2y N B(a, R)}
to obtain

p(£2x N B(a, R)) < Aarc (|| fllp/ )"
Letting R — oo we obtain the same weak type estimate as before.
Thus the proof is complete. [l
We now state and prove the main result of this paper.

THEOREM 3. Let M, be defined as in (2) and 1 < p < oc.
Then M), is in the class A; [4], that is, there is a constant C such
that

1 .
m/BMp(f)(x>du(:c) < C inf M,(f)(x),

where the infimum is taken over all balls B containing x.

Proof. Let

1 du(y)dt
My(u)(x) = sup / u(y,t ,
@) = sup s [ a0
where u(y,t) = |f(y,t)|P. For any ball B in X, decompose

u(y, t) = U1 (ya t) + U2 (y’ t)7

where u1(y,t) = u(y,t)xr3B)(Y,t). Since My is of weak type (1,1)
by Lemma 2, it follows from the Kolmogorov’s inequality [6] that

/B M, () (2) P dps(z)
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for some constant C', that is, for any x € B

L u )Y Pdu(x
55 [ )@ (o)

1/p
1 At
SC(MB)/XXW,W) W )

1/p
1 . ) Syt
= ¢ (N(3B) /T(SB) (®1) t )

< OM; (u)(z)'/?.

Thus
1
4 — | M Vpdu(z) < C inf M p,
@ [ M@ ) < € nf () (@)
On the other hand, for any =,z € B we have
(5) M (uz)(x) < CMi(uz)(z).
In fact, if My (uz)(x) # 0, then clearly z € 3B. Thus

1 du(y)dt
t

Miun)(a) € sup s /T o 1200

recB MW
< OM;y(uz)(2),

as desired. Thus it follows from (5) that

L ws)(2)VPdp(z in us)(2)/?
©) = [ Mile)@)dute) < € inf M (u))

< C inf My (u)(2)Y?.

z€B

Since

M (u)(@)7 < € (M) (@)7 + My () ()7



it
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follows from (4) and (6) that

L ul () Pdu(z
5 | M) duta)

< ([ @ rdute) + [ M@ raute))

< Cinf My (u) ()P,

that is, M (u)'/? = M,(f) € A;. The proof is therefore complete.[]

—_
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