ON MAXIMAL OPERATORS BELONGING TO THE MUCKENHOUPT'S CLASS A_{1}

Choon-Serk Suh

Abstract

We study a maximal operator defined on spaces of homogeneous type, and we prove that this operator is of weak type $(1,1)$. As a consequence we show that the maximal operator belongs to the Muckenhoupt's class A_{1}.

1. Introduction

In this paper we first introduce a space of homogeneous type X, which is a more general setting than a Euclidean space \mathbb{R}^{n}, and we also consider the generalized upper half-space $X \times(0, \infty)$. Then we shall consider a maximal operator M_{p} defined on X as follows. For a measurable function f defined on $X \times(0, \infty)$ and $x \in X$, we define a maximal function of f, as

$$
M_{p}(f)(x)=\sup _{x \in B}\left(\frac{1}{\mu(B)} \int_{T(B)}|f(y, t)|^{p} \frac{d \mu(y) d t}{t}\right)^{1 / p}, \quad 1 \leq p<\infty
$$

where the supremum is taken over all balls B containing x. Here μ denotes surface area measure on X, and $T(B)$ denotes the tent over B.

[^0]In this paper we study that a new kind of a maximal operator M_{p} gives rise to weights in A_{1} [4]. To prove this we need to prove that this operator M_{p} is of weak type (p, p) for some $p, 1 \leq p<\infty$.

2. Some basic notations and preliminary materials

We begin by introducing the notion of a space of homogeneous type [1]: Let X be a topological space endowed with Borel measure μ. Assume that d is a pseudo-metric on X, that is, a nonnegative function on $X \times X$ satisfying
(i) $d(x, x)=0 ; d(x, y)>0$ if $x \neq y$,
(ii) $d(x, y)=d(y, x)$, and
(iii) $d(x, z) \leq K(d(x, y)+d(y, z))$, where K is some fixed constant.

Assume further that
(a) the balls $B(x, \rho)=\{y \in X: d(x, y)<\rho\}, \rho>0$, form a basis of open neighborhoods at $x \in X$,
and that μ satisfies the doubling property:
(b) $0<\mu(B(x, 2 \rho)) \leq A \mu(B(x, \rho))<\infty$, where A is some fixed constant.
Then we call (X, d, μ) a space of homogeneous type.
Property (iii) will be referred to as the "triangle inequality." Note that property (b) implies that for every $C>0$ there is a constant $A_{C}<\infty$ such that

$$
\begin{equation*}
\mu(B(x, C \rho)) \leq A_{C} \mu(B(x, \rho)) \tag{1}
\end{equation*}
$$

for all $x \in X$ and $\rho>0$.
Now consider the space $X \times(0, \infty)$, which is a kind of generalized upper half-space over X. We then define the analogue of nontangential or conoical regions as follows. For $x \in X$, set

$$
\Gamma(x)=\{(y, t) \in X \times(0, \infty): x \in B(y, t)\}
$$

For any set $\Omega \subset X$, the tent over Ω is the set

$$
T(\Omega)=\{(x, t) \in X \times(0, \infty): B(y, t) \subset \Omega\}
$$

It is then very easy to check that

$$
T(\Omega)=(X \times(0, \infty)) \backslash \bigcup_{x \notin \Omega} \Gamma(x)
$$

For a measurable function f defined on $X \times(0, \infty)$ and $x \in X$, we define a maximal function of f, as

$$
\begin{equation*}
M_{p}(f)(x)=\sup _{x \in B}\left(\frac{1}{\mu(B)} \int_{T(B)}|f(y, t)|^{p} \frac{d \mu(y) d t}{t}\right)^{1 / p}, \quad 1 \leq p<\infty \tag{2}
\end{equation*}
$$

where the supremum is taken over all balls B containing x.

3. Main result

The following covering lemma can be found in [1, p.69].
Lemma 1. Let Ω be a bounded subset of X. Suppose that $\rho(x)$ is a positive number for each $x \in \Omega$. Then there is a (finite or infinite) sequence of disjoint balls $\left\{B\left(x_{i}, \rho\left(x_{i}\right)\right\}, x_{i} \in \Omega\right.$, such that

$$
\Omega \subset \bigcup_{i} B\left(x_{i}, 4 K \rho\left(x_{i}\right)\right),
$$

where K is the constant in the triangle inequality. Furthermore, every $x \in \Omega$ is contained in some ball $B\left(x_{i}, 4 K \rho\left(x_{i}\right)\right)$ satisfying $\rho(x) \leq 2 \rho\left(x_{i}\right)$.

Lemma 2. The maximal operator M_{p}, defined as in (2), is of weak type (p, p) for some $p, 1 \leq p<\infty$.

Proof. Fix $\lambda>0$, set

$$
\Omega_{\lambda}=\left\{x \in X: M_{p}(f)(x)>\lambda\right\} .
$$

For each $x \in \Omega_{\lambda}$, let

$$
\begin{aligned}
& \rho(x)=\sup \{\rho>0: \\
&\left.\left(\frac{1}{\mu(B(x, \rho))} \int_{T(B(x, \rho))}|f(y, t)|^{p} \frac{d \mu(y) d t}{t}\right)^{1 / p}>\lambda\right\} .
\end{aligned}
$$

Thus for each $x \in \Omega_{\lambda}$, we have $\rho(x)>0$ and

$$
\begin{equation*}
\frac{1}{\mu(B(x, \rho(x)))} \int_{T(B(x, \rho(x)))}|f(y, t)|^{p} \frac{d \mu(y) d t}{t} \geq \lambda^{p} . \tag{3}
\end{equation*}
$$

Assume first that Ω_{λ} is bounded. Apply Lemma 1 to the balls $B(x, \rho(x))$ to obtain a sequence of disjoint balls $B\left(x_{i}, \rho\left(x_{i}\right)\right)$, so that

$$
\Omega_{\lambda} \subset \bigcup_{i} B\left(x_{i}, 4 K \rho\left(x_{i}\right)\right) .
$$

Then

$$
\begin{align*}
\mu\left(\Omega_{\lambda}\right) & \leq \sum_{i} \mu\left(B\left(x_{i}, 4 K \rho\left(x_{i}\right)\right)\right) \\
& \leq A_{4 K} \sum_{i} \mu\left(B\left(x_{i}, \rho\left(x_{i}\right)\right)\right) \quad(\text { by }(1)) \\
& \leq \frac{A_{4 K}}{\lambda^{p}} \sum_{i} \int_{T\left(B\left(x_{i}, \rho\left(x_{i}\right)\right)\right)}|f(y, t)|^{p} \frac{d \mu(y) d t}{t} \tag{3}\\
& \leq \frac{A_{4 K}}{\lambda^{p}} \int_{X \times(0, \infty)}|f(y, t)|^{p} \frac{d \mu(y) d t}{t} \\
& =A_{4 K}\left(\|f\|_{p} / \lambda\right)^{p},
\end{align*}
$$

since the balls $B\left(x_{i}, \rho\left(x_{i}\right)\right)$ are disjoint. Thus M_{p} is of weak type (p, p).

Assume second that Ω_{λ} is not bounded. Fix $a \in X$ and $R>0$. Then $\Omega_{\lambda} \cap B(a, R)$ is a bounded set, and so, as in the above argument, we can apply Lemma 1 to the balls $\left\{B(x, \rho(x)): x \in \Omega_{\lambda} \cap B(a, R)\right\}$ to obtain

$$
\mu\left(\Omega_{\lambda} \cap B(a, R)\right) \leq A_{4 K}\left(\|f\|_{p} / \lambda\right)^{p} .
$$

Letting $R \rightarrow \infty$ we obtain the same weak type estimate as before. Thus the proof is complete.

We now state and prove the main result of this paper.
Theorem 3. Let M_{p} be defined as in (2) and $1 \leq p<\infty$. Then M_{p} is in the class A_{1} [4], that is, there is a constant C such that

$$
\frac{1}{\mu(B)} \int_{B} M_{p}(f)(x) d \mu(x) \leq C \inf _{x \in B} M_{p}(f)(x)
$$

where the infimum is taken over all balls B containing x.
Proof. Let

$$
M_{1}(u)(x)=\sup _{x \in B} \frac{1}{\mu(B)} \int_{T(B)} u(y, t) \frac{d \mu(y) d t}{t}
$$

where $u(y, t)=|f(y, t)|^{p}$. For any ball B in X, decompose

$$
u(y, t)=u_{1}(y, t)+u_{2}(y, t)
$$

where $u_{1}(y, t)=u(y, t) \chi_{T(3 B)}(y, t)$. Since M_{1} is of weak type $(1,1)$ by Lemma 2, it follows from the Kolmogorov's inequality [6] that

$$
\begin{aligned}
& \int_{B} M_{1}\left(u_{1}\right)(x)^{1 / p} d \mu(x) \\
& \quad \leq C \mu(B)^{1-1 / p}\left(\int_{X \times(0, \infty)} u_{1}(y, t) \frac{d \mu(y) d t}{t}\right)^{1 / p}
\end{aligned}
$$

for some constant C, that is, for any $x \in B$

$$
\begin{aligned}
& \frac{1}{\mu(B)} \int_{B} M_{1}\left(u_{1}\right)(x)^{1 / p} d \mu(x) \\
& \quad \leq C\left(\frac{1}{\mu(B)} \int_{X \times(0, \infty)} u_{1}(y, t) \frac{d \mu(y) d t}{t}\right)^{1 / p} \\
& \quad \leq C\left(\frac{1}{\mu(3 B)} \int_{T(3 B)} u(y, t) \frac{d \mu(y) d t}{t}\right)^{1 / p} \\
& \quad \leq C M_{1}(u)(x)^{1 / p}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\frac{1}{\mu(B)} \int_{B} M_{1}\left(u_{1}\right)(x)^{1 / p} d \mu(x) \leq C \inf _{x \in B} M_{1}(u)(x)^{1 / p} \tag{4}
\end{equation*}
$$

On the other hand, for any $x, z \in B$ we have

$$
\begin{equation*}
M_{1}\left(u_{2}\right)(x) \leq C M_{1}\left(u_{2}\right)(z) \tag{5}
\end{equation*}
$$

In fact, if $M_{1}\left(u_{2}\right)(x) \neq 0$, then clearly $z \in 3 B$. Thus

$$
\begin{aligned}
M_{1}\left(u_{2}\right)(x) & \leq \sup _{x \in B} \frac{1}{\mu(B)} \int_{T(3 B)}\left|u_{2}(y, t)\right| \frac{d \mu(y) d t}{t} \\
& \leq C M_{1}\left(u_{2}\right)(z)
\end{aligned}
$$

as desired. Thus it follows from (5) that

$$
\begin{align*}
\frac{1}{\mu(B)} \int_{B} M_{1}\left(u_{2}\right)(x)^{1 / p} d \mu(x) & \leq C \inf _{z \in B} M_{1}\left(u_{2}\right)(z)^{1 / p} \tag{6}\\
& \leq C \inf _{z \in B} M_{1}(u)(z)^{1 / p}
\end{align*}
$$

Since

$$
M_{1}(u)(x)^{1 / p} \leq C\left(M_{1}\left(u_{1}\right)(x)^{1 / p}+M_{1}\left(u_{2}\right)(x)^{1 / p}\right)
$$

it follows from (4) and (6) that

$$
\begin{aligned}
& \frac{1}{\mu(B)} \int_{B} M_{1}(u)(x)^{1 / p} d \mu(x) \\
& \quad \leq \frac{C}{\mu(B)}\left(\int_{B} M_{1}\left(u_{1}\right)(x)^{1 / p} d \mu(x)+\int_{B} M_{1}\left(u_{2}\right)(x)^{1 / p} d \mu(x)\right) \\
& \quad \leq C \inf _{x \in B} M_{1}(u)(x)^{1 / p},
\end{aligned}
$$

that is, $M_{1}(u)^{1 / p}=M_{p}(f) \in A_{1}$. The proof is therefore complete.

REFERENCES

1. R. R. Coifman and G. Weiss, Analyse Harmonique Non-commutative sur Certains Espaces Homogènes, Lecture Notes in Math., Vol. 242, SpringerVerlag, Berlin, 1971.
2. \qquad _, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
3. A. Korányi and S. Vági, Singular integrals on homogeneous spaces and some problems of classical analysis, Ann. Scuola Norm. Sup. Pisa 25 (1971), 575648.
4. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
5. J. Suerio, On maximal functions and Poisson-Szegö integrals, Trans. Amer. Math. Soc. 298 (1986), 653-669.
6. A. Torchinsky, Real-variable Methods in Harmonic Analysis, Academic press New York, 1986.

Choon-Serk Suh

School of Information and Communication Engineering
Dongyang University
Youngju 750-711, Korea
E-mail: cssuh@phenix.dyu.ac.kr

[^0]: Received June 21, 2006. Revised April 23, 2007.
 2000 Mathematics Subject Classification: 42B25.
 Key words and phrases: space of homogeneous type, tent, maximal operator, weak type (p, p), A_{1} weights.

