East Asian Math. J. 23 (2007), No. 1, pp. 37-43

ON MAXIMAL OPERATORS BELONGING TO THE MUCKENHOUPT'S CLASS A_1

CHOON-SERK SUH

ABSTRACT. We study a maximal operator defined on spaces of homogeneous type, and we prove that this operator is of weak type (1,1). As a consequence we show that the maximal operator belongs to the Muckenhoupt's class A_1 .

1. Introduction

In this paper we first introduce a space of homogeneous type X, which is a more general setting than a Euclidean space \mathbb{R}^n , and we also consider the generalized upper half-space $X \times (0, \infty)$. Then we shall consider a maximal operator M_p defined on X as follows. For a measurable function f defined on $X \times (0, \infty)$ and $x \in X$, we define a maximal function of f, as

$$M_p(f)(x) = \sup_{x \in B} \left(\frac{1}{\mu(B)} \int_{T(B)} |f(y,t)|^p \frac{d\mu(y)dt}{t} \right)^{1/p}, \quad 1 \le p < \infty,$$

where the supremum is taken over all balls B containing x. Here μ denotes surface area measure on X, and T(B) denotes the tent over B.

Received June 21, 2006. Revised April 23, 2007.

²⁰⁰⁰ Mathematics Subject Classification: 42B25.

Key words and phrases: space of homogeneous type, tent, maximal operator, weak type (p, p), A_1 weights.

Choon-Serk Suh

In this paper we study that a new kind of a maximal operator M_p gives rise to weights in A_1 [4]. To prove this we need to prove that this operator M_p is of weak type (p, p) for some $p, 1 \leq p < \infty$.

2. Some basic notations and preliminary materials

We begin by introducing the notion of a space of homogeneous type [1]: Let X be a topological space endowed with Borel measure μ . Assume that d is a pseudo-metric on X, that is, a nonnegative function on $X \times X$ satisfying

- (i) d(x, x) = 0; d(x, y) > 0 if $x \neq y$,
- (ii) d(x, y) = d(y, x), and
- (iii) $d(x,z) \leq K(d(x,y)+d(y,z))$, where K is some fixed constant.

Assume further that

(a) the balls $B(x, \rho) = \{y \in X : d(x, y) < \rho\}, \rho > 0$, form a basis of open neighborhoods at $x \in X$,

and that μ satisfies the doubling property:

(b) $0 < \mu(B(x, 2\rho)) \le A\mu(B(x, \rho)) < \infty$, where A is some fixed constant.

Then we call (X, d, μ) a space of homogeneous type.

Property (iii) will be referred to as the "triangle inequality." Note that property (b) implies that for every C > 0 there is a constant $A_C < \infty$ such that

(1)
$$\mu(B(x, C\rho)) \le A_C \mu(B(x, \rho))$$

for all $x \in X$ and $\rho > 0$.

Now consider the space $X \times (0, \infty)$, which is a kind of generalized upper half-space over X. We then define the analogue of nontangential or conoical regions as follows. For $x \in X$, set

$$\Gamma(x) = \{(y,t) \in X \times (0,\infty) : x \in B(y,t)\}.$$

38

On maximal operators belonging to the Muckenhoupt's class A_1 39

For any set $\Omega \subset X$, the *tent* over Ω is the set

$$T(\varOmega) = \{(x,t) \in X \times (0,\infty) : B(y,t) \subset \Omega\}.$$

It is then very easy to check that

$$T(\Omega) = (X \times (0, \infty)) \setminus \bigcup_{x \notin \Omega} \Gamma(x).$$

For a measurable function f defined on $X \times (0, \infty)$ and $x \in X$, we define a maximal function of f, as (2)

$$M_p(f)(x) = \sup_{x \in B} \left(\frac{1}{\mu(B)} \int_{T(B)} |f(y,t)|^p \frac{d\mu(y)dt}{t} \right)^{1/p}, \quad 1 \le p < \infty,$$

where the supremum is taken over all balls B containing x.

3. Main result

The following covering lemma can be found in [1, p.69].

LEMMA 1. Let Ω be a bounded subset of X. Suppose that $\rho(x)$ is a positive number for each $x \in \Omega$. Then there is a (finite or infinite) sequence of disjoint balls $\{B(x_i, \rho(x_i)\}, x_i \in \Omega, \text{ such that }$

$$\Omega \subset \bigcup_i B(x_i, 4K\rho(x_i)),$$

where K is the constant in the triangle inequality. Furthermore, every $x \in \Omega$ is contained in some ball $B(x_i, 4K\rho(x_i))$ satisfying $\rho(x) \leq 2\rho(x_i)$.

LEMMA 2. The maximal operator M_p , defined as in (2), is of weak type (p, p) for some $p, 1 \le p < \infty$.

Proof. Fix $\lambda > 0$, set

$$\Omega_{\lambda} = \{ x \in X : M_p(f)(x) > \lambda \}.$$

For each $x \in \Omega_{\lambda}$, let

$$\begin{split} \rho(x) &= \sup \left\{ \rho > 0 : \\ \left(\frac{1}{\mu(B(x,\rho))} \int_{T(B(x,\rho))} |f(y,t)|^p \frac{d\mu(y)dt}{t} \right)^{1/p} > \lambda \right\}. \end{split}$$

Thus for each $x \in \Omega_{\lambda}$, we have $\rho(x) > 0$ and

(3)
$$\frac{1}{\mu(B(x,\rho(x)))} \int_{T(B(x,\rho(x)))} |f(y,t)|^p \frac{d\mu(y)dt}{t} \ge \lambda^p.$$

Assume first that Ω_{λ} is bounded. Apply Lemma 1 to the balls $B(x, \rho(x))$ to obtain a sequence of disjoint balls $B(x_i, \rho(x_i))$, so that

$$\Omega_{\lambda} \subset \bigcup_{i} B(x_i, 4K\rho(x_i)).$$

Then

$$\begin{split} \mu(\Omega_{\lambda}) &\leq \sum_{i} \mu(B(x_{i}, 4K\rho(x_{i}))) \\ &\leq A_{4K} \sum_{i} \mu(B(x_{i}, \rho(x_{i}))) \qquad (\text{by (1)}) \\ &\leq \frac{A_{4K}}{\lambda^{p}} \sum_{i} \int_{T(B(x_{i}, \rho(x_{i})))} |f(y, t)|^{p} \frac{d\mu(y)dt}{t} \qquad (\text{by (3)}) \\ &\leq \frac{A_{4K}}{\lambda^{p}} \int_{X \times (0, \infty)} |f(y, t)|^{p} \frac{d\mu(y)dt}{t} \\ &= A_{4K} (||f||_{p}/\lambda)^{p}, \end{split}$$

40

since the balls $B(x_i, \rho(x_i))$ are disjoint. Thus M_p is of weak type (p, p).

Assume second that Ω_{λ} is not bounded. Fix $a \in X$ and R > 0. Then $\Omega_{\lambda} \cap B(a, R)$ is a bounded set, and so, as in the above argument, we can apply Lemma 1 to the balls $\{B(x, \rho(x)) : x \in \Omega_{\lambda} \cap B(a, R)\}$ to obtain

$$\mu(\Omega_{\lambda} \cap B(a, R)) \le A_{4K}(||f||_p / \lambda)^p.$$

Letting $R \to \infty$ we obtain the same weak type estimate as before. Thus the proof is complete.

We now state and prove the main result of this paper.

THEOREM 3. Let M_p be defined as in (2) and $1 \leq p < \infty$. Then M_p is in the class A_1 [4], that is, there is a constant C such that

$$\frac{1}{\mu(B)} \int_B M_p(f)(x) d\mu(x) \le C \inf_{x \in B} M_p(f)(x),$$

where the infimum is taken over all balls B containing x.

Proof. Let

$$M_1(u)(x) = \sup_{x \in B} \frac{1}{\mu(B)} \int_{T(B)} u(y,t) \frac{d\mu(y)dt}{t},$$

where $u(y,t) = |f(y,t)|^p$. For any ball B in X, decompose

$$u(y,t) = u_1(y,t) + u_2(y,t),$$

where $u_1(y,t) = u(y,t)\chi_{T(3B)}(y,t)$. Since M_1 is of weak type (1,1) by Lemma 2, it follows from the Kolmogorov's inequality [6] that

$$\int_{B} M_{1}(u_{1})(x)^{1/p} d\mu(x)$$

$$\leq C\mu(B)^{1-1/p} \left(\int_{X \times (0,\infty)} u_{1}(y,t) \frac{d\mu(y)dt}{t} \right)^{1/p}$$

Choon-Serk Suh

for some constant C, that is, for any $x \in B$

$$\frac{1}{\mu(B)} \int_{B} M_{1}(u_{1})(x)^{1/p} d\mu(x) \\
\leq C \left(\frac{1}{\mu(B)} \int_{X \times (0,\infty)} u_{1}(y,t) \frac{d\mu(y) dt}{t} \right)^{1/p} \\
\leq C \left(\frac{1}{\mu(3B)} \int_{T(3B)} u(y,t) \frac{d\mu(y) dt}{t} \right)^{1/p} \\
\leq C M_{1}(u)(x)^{1/p}.$$

Thus

(4)
$$\frac{1}{\mu(B)} \int_B M_1(u_1)(x)^{1/p} d\mu(x) \le C \inf_{x \in B} M_1(u)(x)^{1/p}.$$

On the other hand, for any $x,z\in B$ we have

(5)
$$M_1(u_2)(x) \le CM_1(u_2)(z).$$

In fact, if $M_1(u_2)(x) \neq 0$, then clearly $z \in 3B$. Thus

$$M_{1}(u_{2})(x) \leq \sup_{x \in B} \frac{1}{\mu(B)} \int_{T(3B)} |u_{2}(y,t)| \frac{d\mu(y)dt}{t} \\ \leq CM_{1}(u_{2})(z),$$

as desired. Thus it follows from (5) that

(6)
$$\frac{1}{\mu(B)} \int_{B} M_{1}(u_{2})(x)^{1/p} d\mu(x) \leq C \inf_{z \in B} M_{1}(u_{2})(z)^{1/p} \\ \leq C \inf_{z \in B} M_{1}(u)(z)^{1/p}.$$

Since

$$M_1(u)(x)^{1/p} \le C\left(M_1(u_1)(x)^{1/p} + M_1(u_2)(x)^{1/p}\right),$$

42

On maximal operators belonging to the Muckenhoupt's class A_1 43

it follows from (4) and (6) that

$$\frac{1}{\mu(B)} \int_{B} M_{1}(u)(x)^{1/p} d\mu(x)
\leq \frac{C}{\mu(B)} \left(\int_{B} M_{1}(u_{1})(x)^{1/p} d\mu(x) + \int_{B} M_{1}(u_{2})(x)^{1/p} d\mu(x) \right)
\leq C \inf_{x \in B} M_{1}(u)(x)^{1/p},$$

that is, $M_1(u)^{1/p} = M_p(f) \in A_1$. The proof is therefore complete.

REFERENCES

- R. R. Coifman and G. Weiss, Analyse Harmonique Non-commutative sur Certains Espaces Homogènes, Lecture Notes in Math., Vol. 242, Springer-Verlag, Berlin, 1971.
- <u>____</u>, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569–645.
- A. Korányi and S. Vági, Singular integrals on homogeneous spaces and some problems of classical analysis, Ann. Scuola Norm. Sup. Pisa 25 (1971), 575– 648.
- 4. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.
- J. Suerio, On maximal functions and Poisson-Szegö integrals, Trans. Amer. Math. Soc. 298 (1986), 653–669.
- A. Torchinsky, *Real-variable Methods in Harmonic Analysis*, Academic press New York, 1986.

Choon-Serk Suh School of Information and Communication Engineering Dongyang University Youngju 750-711, Korea *E-mail*: cssuh@phenix.dyu.ac.kr