• Title/Summary/Keyword: homoclinic orbits

Search Result 8, Processing Time 0.019 seconds

HOMOCLINIC ORBITS IN TRANSITIONAL PLANE COUETTE FLOW

  • Lustro, Julius Rhoan T.;Kawahara, Genta;van Veen, Lennaert;Shimizu, Masaki
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.58-62
    • /
    • 2015
  • Recent studies on wall-bounded shear flow have emphasized the significance of the stable manifold of simple nonlinear invariant solutions to the Navier-Stokes equation in the formation of the boundary between the laminar and turbulent regions in state space. In this paper we present newly discovered homoclinic orbits of the Kawahara and Kida(2001) periodic solution in plane Couette flow. We show that as the Reynolds number decreases a pair of homoclinic orbits move closer to each other until they disappear to exhibit homoclinic tangency.

PERSISTENCE OF HOMOCLINIC ORBITS AFTER DISCRETIZATION OF A TWO DIMENSIONAL DEGENERATE DIFFERENTIAL SYSTEM

  • Mehidi, Noureddine;Mohdeb, Nadia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1503-1510
    • /
    • 2014
  • The aim of this work is to construct a general family of two dimensional differential systems which admits homoclinic solutions near a non-hyperbolic fixed point, such that a Jacobian matrix at this point is zero. We then discretize it by using Euler's method and look after the persistence of the homoclinic solutions in the obtained discrete system.

EXISTENCE OF HOMOCLINIC ORBITS FOR LIENARD TYPE SYSTEMS

  • Kim, Yong-In
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.389-396
    • /
    • 2010
  • We investigate the existence of homoclinic orbits of the following systems of $Li{\'{e}}nard$ type: $a(x)x^'=h(y)-F(x)$, $y^'$=-a(x)g(x), where $h(y)=m{\mid}y{\mid}^{p-2}y$ with m > 0 and p > 1 and a, F, 9 are continuous functions such that a(x) > 0 for all $x{\in}{\mathbb{R}}$ and F(0)=g(0)=0 and xg(x) > 0 for $x{\neq}0$. By a series of time and coordinates transformations of the above system, we obtain sufficient conditions for the positive orbits of the above system starting at the points on the curve h(y) = F(x) with x > 0 to approach the origin through only the first quadrant. The method of this paper is new and the results of this paper cover some early results on this topic.

Global Bifurcations in the Asymmetric Vibrations of a Circular Plate (원판의 비대칭진동의 대역분기해석)

  • 여명환;이원경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.504-514
    • /
    • 2003
  • We investigate global bifurcation in the subharmonic motion of a circular plate with one-to-one internal resonance. A system of autonomous equations are obtained from the partial differential equations governing the system by using Galerkin's procedure and the method of multiple scales. A perturbation method developed by Kovacic and Wiggins is used to find Silnikov type homoclinic orbits. The conditions under which the orbits occur are obtained.

  • PDF

HOMOCLINIC ORBITS FOR HAMILTONIAN SYSTEMS

  • Kim, June-Gi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 1995
  • Let $p, q \in R^2 and H : R^{2n} \to R^n$ be differentiable. An autonomous Hamiltonian system has the form $$ (0.1) \dot{p} = -\frac{\partial q}{\partial H}(p, q), \dot{q} = \frac{\partial p}{\partial H}(p, q) $$.

  • PDF

CHAOTIC THRESHOLD ANALYSIS OF NONLINEAR VEHICLE SUSPENSION BY USING A NUMERICAL INTEGRAL METHOD

  • Zhuang, D.;Yu, F.;Lin, Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • Since it is difficult to analytically express the Melnikov function when a dynamic system possesses multiple saddle fixed points with homoclinic and/or heteroclinic orbits, this paper investigates a vehicle model with nonlinear suspension spring and hysteretic damping element, which exhibits multiple heteroclinic orbits in the unperturbed system. First, an algorithm for Melnikov integrals is developed based on the Melnikov method. And then the amplitude threshold of road excitation at the onset of chaos is determined. By numerical simulation, the existence of chaos in the present system is verified via time history curves, phase portrait plots and $Poincar{\acute{e}}$ maps. Finally, in order to further identify the chaotic motion of the nonlinear system, the maximal Lyapunov exponent is also adopted. The results indicate that the numerical method of estimating chaotic threshold is an effective one to complicated vehicle systems.

The Melnikov Analysis of the Pitch Dynamics of a Gravity Gradient Satellite (중력구배 인공위성의 Pitch운동의 Melnikov해석)

  • Lee, Mok-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1427-1432
    • /
    • 2009
  • The pitch motion of a generic gravity gradient satellite is investigated in terms of chaos. The Melnikov method is used for detecting the onset of chaotic behavior of the pitch motion of a gravity gradient satellite. The Melnikov method determines the distance between stable and unstable manifolds of a perturbed system. When stable and unstable manifolds transverse on the Poincare section, the resulting motion can be chaotic. The Melnikov analysis indicates that the pitch dynamics of a generic gravity gradient satellite can be chaotic when the orbit eccentricity is small.