HOMOCLINIC ORBITS FOR SECOND ORDER HAMILTONIAN SYSTEMS

Dae Hyeon Pahk and June Gi Kim

0. Introduction

Let us consider the following second order Hamiltonian systems of the form;

$$
\begin{equation*}
\ddot{q}-L(t) q+V_{q}(t, q)=0, \quad q \in \mathbf{R}^{n} . \tag{HS}
\end{equation*}
$$

We assume that the $n \times n$ matrix $L(t)$ satisfies

$$
\begin{equation*}
L(t) \in C\left(\mathbf{R}, \mathbf{R}^{n^{2}}\right) \tag{L}
\end{equation*}
$$

is T-periodic in t, and is symmetric and positive definite uniformly for $t \in[0, T]$. The function V satisfies
$\left(\mathrm{V}_{1}\right) V \in C^{2}\left(\mathbf{R} \times \mathbf{R}^{n}, \mathbf{R}\right)$ and $V(t, q)$ is T-periodic in t,
$\left(\mathrm{V}_{2}\right) V_{q q}(t, 0)=0$,
$\left(\mathrm{V}_{3}\right)$ There is a $\mu>2$ such that

$$
0<\mu V(t, q) \leq\left\langle q, V_{q}(t, q)\right\rangle \text { for all } q \in \mathbf{R}^{n} \backslash\{0\}
$$

V. Coti Zelati and Paul H. Rabinowitz [3] proved the existence of infinitely many homoclinic solutions for the problem (HS) under the conditions $\left(\mathrm{V}_{1}\right),\left(\mathrm{V}_{2}\right),\left(\mathrm{V}_{3}\right)$, and $(*)$. Here $(*)$ is the condition that there exist only finite number of critical points of the corresponding functional I of the problem (HS) whose critical values are less than a certain number and will be explained later. They have even suggested that the condition (*) could be replaced with the weaker condition (**) in [3] ,which asserts the discreteness of the critical values instead of the finiteness of the critical values as in (*) and will be explained below. Moreover they have

This research is partly supported by GARC, KOSEF and BSRI.
shown that the same results could be obtained under a weaker condition (**) if we further assume that V satisfies one more condition
$\left(\mathrm{V}_{4}\right)$ For all $\xi \in S^{n-1}, s \mapsto \frac{1}{s}\left\langle\xi, V_{q}(t, s \xi)\right\rangle$ is an increasing function of s.
Therefore it is natural to ask with what kind of potentials the corresponding functionals satisfy (**). In this paper we give the condition on V whose corresponding functional satisfies ($* *$) and so (HS) with this potential has infinitely many homoclinic solutions.

1. Preliminaries

Let $E=W^{1,2}\left(\mathbf{R}, \mathbf{R}^{n}\right)$ under the usual norm

$$
\left(\int_{-\infty}^{\infty}\left(|\dot{q}|^{2}+|q|^{2}\right) d t\right)^{1 / 2}
$$

Thus E is a Hilbert space and $E \subset C^{0}\left(\mathbf{R}, \mathbf{R}^{n}\right)$, the space of continuous function q on \mathbf{R} such that $q(t) \rightarrow 0$ as $|t| \rightarrow \infty$. We will seek solutions of (HS) as critical points of the functional I associated with (HS) and given by

$$
I(q)=\frac{1}{2} \int_{-\infty}^{\infty}\left(|\dot{q}|^{2}+\langle q, L(t) q\rangle\right) d t-\int_{-\infty}^{\infty} V(t, q) d t .
$$

By (L),

$$
\|q\|^{2}=\int_{-\infty}^{\infty}\left(|\dot{q}|^{2}+\langle q, L(t) q\rangle\right) d t
$$

can and will be taken as an equivalent norm on E. If $q \in E, j \in \mathbf{Z}$, and $\tau_{j}(q)=q(t-j T)$, then $I\left(\tau_{j} q\right)=I(q)$. Hence I possesses a Zaction. It is standard that the critical points of I in E correspond to the homoclinic solutions for (HS). However to apply the standard variational methods it is necessary that I satisfy the Palais-Smale condition which is abbreviated as the (PS) condition. But our functional does not satisfy the (PS)-condition.

Lemma 1.1. I does not satisfies the (PS) condition.

- Proof. Suppose $b>0$ is a critical value of I with corresponding critical point q. Let $u_{m}=q+\tau_{m} q$. Then

$$
\begin{aligned}
I\left(u_{m}\right)= & \frac{1}{2}\left\|q+\tau_{m} q\right\|^{2}-\int_{-\infty}^{\infty} V\left(t, q+\tau_{m} q\right) d t \\
= & \frac{1}{2}\left\|q+\tau_{m} q\right\|^{2}-\int_{-\infty}^{\infty} V(t, q) d t-\int_{-\infty}^{\infty} V\left(t, \tau_{m} q\right) d t \\
& -\int_{-\infty}^{\infty}\left(V\left(t, q+\tau_{m} q\right)-V(t, q)-V\left(t, \tau_{m} q\right)\right) d t
\end{aligned}
$$

Observe that $V\left(t, q+\tau_{m} q\right)-V(t, q)-V\left(t, \tau_{m} q\right) \rightarrow 0$ uniformly on $[-R, R], 0<R<+\infty$. Choose $\delta>0$ so that

$$
|x|<\delta \text { implies that }\left|V_{q}(t, x)\right| \leq|x| .
$$

Choose $M>0$ so that

$$
\begin{aligned}
\left\|q+\tau_{m} q\right\|_{L^{\infty}} & \leq \sqrt{2}\left\|q+\tau_{m} q\right\| \\
& \leq 2 \sqrt{2}\|q\| \\
& <M<+\infty
\end{aligned}
$$

Let $M_{1}=\sup _{\sigma \leq|\xi| \leq M}\left|V_{q}(t, \xi)\right|$. Then we have

$$
\left|V_{q}(t, x)\right| \leq\left(1+\frac{M_{1}}{\delta}\right)|x| \text { for } \quad|x| \leq M
$$

Thus

$$
\begin{aligned}
\left|V\left(t, q+\tau_{m} q\right)-V\left(t, \tau_{m} q\right)\right| & \leq\left\langle q, V_{q}\left(t, \theta q+\tau_{m} q\right)\right\rangle \\
& \leq\left(1+\frac{M_{1}}{\delta}\right)|q|\left(|q|+\left|\tau_{m} q\right|\right), 0<\theta<1 .
\end{aligned}
$$

Hence

$$
\int_{|t|>R}\left|V\left(t, q+\tau_{m} q\right)-V\left(t, \tau_{m} q\right)\right| d t
$$

$$
\begin{aligned}
& =\int_{|t|>R}\left|\left\langle q, V_{q}\left(t, \theta q+\tau_{m} q\right)\right\rangle\right| d t \\
& \leq\left(1+\frac{M_{1}}{\delta}\right)\left(\int_{|t|>R}|q|^{2} d t\right)^{\frac{1}{2}}\left(\int_{|t|>R}\left(|q|^{2}+\left|\tau_{m} q\right|^{2}\right) d t\right)^{1 / 2} \\
& \leq 2\|q\|\left(1+\frac{M_{1}}{\delta}\right)\left(\int_{|t|>R}|q|^{2} d t\right)^{1 / 2} .
\end{aligned}
$$

Given $\varepsilon>0$, we can choose R sufficiently large so that

$$
\begin{aligned}
1-\int_{|t|>R} V(t, q) d t \mid & =\int_{|t|>R} V(t, q) d t \\
& \leq \varepsilon \int_{|t|>R}|q|^{2} d t
\end{aligned}
$$

and

$$
\int_{|t|>R}|q|^{2} d t<\varepsilon
$$

Therefore $\int_{-\infty}^{\infty}\left(V\left(t, q+\tau_{m} q\right)-V(t, q)-V\left(t, \tau_{m} q\right)\right) d t \rightarrow 0$ as $m \rightarrow \infty$. Note also that $\left\|q+\tau_{m} q\right\|^{2}=\|q\|^{2}+\left\|\tau_{m} q\right\|^{2}+\varepsilon_{m}, \varepsilon_{m} \rightarrow 0$ as $m \rightarrow+\infty$. Thus $I\left(u_{m}\right) \rightarrow 2 b$. Let us now check $I^{\prime}\left(u_{m}\right)$. For each $\varphi \in E$, we have

$$
\begin{aligned}
\left\langle I^{\prime}\left(u_{m}\right), \varphi\right\rangle= & \left\langle I^{\prime}\left(q+\tau_{m} q\right), \varphi\right\rangle \\
= & \int_{-\infty}^{\infty}\left(\left\langle\dot{q}+\tau_{m} \dot{q}, \dot{\varphi}\right\rangle+\left\langle\varphi, L(t)\left(q+\tau_{m} q\right)\right\rangle\right) d t \\
& -\int_{-\infty}^{\infty}\left\langle\varphi, V_{q}\left(t, q+\tau_{m} q\right)\right\rangle d t \\
= & -\int_{-\infty}^{\infty}\left\langle\varphi, V_{q}\left(t, q+\tau_{m} q\right)-V_{q}\left(t, \tau_{m} q\right)-V_{q}(t, q)\right\rangle d t .
\end{aligned}
$$

Hence $I^{\prime}\left(u_{m}\right) \rightarrow 0$. However

$$
\begin{aligned}
\left\|u_{m}-u_{n}\right\| & =\left\|\tau_{m} q-\tau_{n} q\right\| \\
& =\left\|q-\tau_{n-m} q\right\| \\
& =2\|q\|+\varepsilon_{|n-m|},
\end{aligned}
$$

where $\varepsilon_{|n-m|} \rightarrow 0$ as $|n-m| \rightarrow+\infty$. Therefore (u_{m}) has no convergent subsequence.

Given $q \in E \backslash\{0\}$, define a function $f:(0, \infty) \rightarrow \mathbf{R}$ by

$$
\begin{aligned}
f(s) & =I(s q) \\
& =\frac{s^{2}}{2} \int_{-\infty}^{\infty}\left(|\dot{q}|^{2}+\langle q, L(t) q\rangle\right) d t-\int_{-\infty}^{\infty} V(t, s q) d t
\end{aligned}
$$

Then

$$
\begin{aligned}
f^{\prime}(s) & =s \int_{-\infty}^{\infty}\left(|\dot{q}|^{2}+\langle q, L(t) q\rangle\right) d t-\int_{-\infty}^{\infty}\left\langle q, V_{q}(t, s q)\right\rangle d t \\
& =s\left(\int_{-\infty}^{\infty}\left(|\dot{q}|^{2}+\langle q, L(t) q\rangle\right) d t-\frac{1}{s} \int_{-\infty}^{\infty}\left\langle q, V_{q}(t, s q)\right\rangle d t\right)
\end{aligned}
$$

Now $\left(V_{4}\right)$ implies that $f:(0, \infty) \rightarrow \mathbf{R}$ has a unique maximum point. Moreover (V_{1})-(V_{3}) implies that

$$
V(t, x)\left\{\begin{array}{lll}
\leq M|x|^{\mu} & \text { uniformly in } t \text { for } & |x| \leq 1 \\
\geq m|x|^{\mu} & \text { uniformly in } t \text { for } & |x| \geq 1
\end{array}\right.
$$

Here

$$
\begin{aligned}
& m=\min _{\substack{t \in \mathbf{R} \\
|x|=1}} V(t, x)>0 \quad \text { and } \\
& M=\max _{\substack{t \in \mathbf{R} \\
|x|=1}} V(t, x)>0
\end{aligned}
$$

Hence $f(s) \rightarrow-\infty$ as $s \rightarrow+\infty$. Observe also that $I(q)=\frac{1}{2}\|q\|^{2}+$ $o\left(\|q\|^{2}\right)$. Therefore 0 is an isolated singular point of I. Choose a point $e \neq 0$ such that $I(e) \leq 0$. Let

$$
c=\inf _{g \in \Gamma_{e}} \max _{\theta \in[0,1]} I(g(\theta))
$$

where

$$
\Gamma_{e}=\{g \in C([0,1], E): g(0)=0, g(1)=e\}
$$

Since $I(q)=\frac{1}{2}\|q\|^{2}+o\left(\|q\|^{2}\right), \quad c>0$.
From now on we use the following notations;

$$
\begin{aligned}
I^{s} & =\{q \in E \mid I(q) \leq s\}, \quad I_{s}=\{q \in E \mid I(q) \geq s\}, \\
I_{a}^{b} & =I_{a} \cap I^{b}, \quad \mathcal{K}=\text { the set of critical points of } I \\
\mathcal{K}_{a}^{b} & =\mathcal{K} \cap I_{a}^{b} .
\end{aligned}
$$

Recall that the key roles (PS) plays in the proof of the standard Deformation Theorem is that it provides a $\delta>0$ such that $\left\|I^{\prime}(x)\right\| \geq \delta$ for all $x \in I_{b-\varepsilon}^{b+\varepsilon}$ for some $\varepsilon>0$ if $\mathcal{K}(b) \equiv \mathcal{K}_{b}^{b}=\emptyset$ and an appropriately modified statement if $\mathcal{K}(b) \neq \emptyset$. Since our functional I does not satisfy the (PS)-condition, we cannot use the standard Deformation Theorem in its naive form. However V. Coti Zelati and Paul H. Rabinowitz [3] escaped from this difficulty by imposing the condition there is an $\alpha>0$ such that $I^{c+\alpha} / \mathbf{Z}$ contains only finitely many critical points of I.

Usually the value of c depends on the choice of e. But we have the following

Lemma 1.2. If V satisfies $\left(\mathrm{V}_{1}\right)-\left(\mathrm{V}_{3}\right)$, then c is independent of the choice of e.

Proof. Define a function $f:(0, \infty) \rightarrow \mathbf{R}$ by

$$
\begin{aligned}
f(s) & =I(s q) \\
& =\frac{s^{2}}{2} \int_{-\infty}^{\infty}\left(|\dot{q}|^{2}+\langle q, L(t) q\rangle\right) d t-\int_{-\infty}^{\infty} V(t, s q) d t
\end{aligned}
$$

Then

$$
\begin{aligned}
f^{\prime}(s) & =s \int_{-\infty}^{\infty}\left(|\dot{q}|^{2}+\langle q, L(t) q\rangle\right) d t-\int_{-\infty}^{\infty}\left\langle q, V_{q}(t, s q)\right\rangle d t \\
& \leq s \int_{-\infty}^{\infty}\left(|\dot{q}|^{2}+\langle q, L(t) q\rangle\right) d t-\frac{\mu}{s} \int_{-\infty}^{\infty} V(t, s q) d t
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\mu}{s}\left(\frac{s^{2}}{\mu} \int_{-\infty}^{\infty}\left(|\dot{q}|^{2}+\langle q, L(t) q\rangle\right) d t-\int_{-\infty}^{\infty} V(t, s q) d t\right) \\
& \leq \frac{\mu}{s}\left(\frac{s^{2}}{2} \int_{-\infty}^{\infty}\left(|\dot{q}|^{2}+\langle q, L(t) q\rangle\right) d t-\int_{-\infty}^{\infty} V(t, s q) d t\right) \\
& =\frac{\mu}{s} f(s)
\end{aligned}
$$

Hence we obtain $f^{\prime}(s)-\mu / s f(s) \leq 0$. This implies that $f(s) / s^{\mu}$ is a decreasing function of s. Therefore any two points $e_{1} \neq 0$ and $e_{2} \neq 0$ such that $e_{1} \in I^{0}$ and $e_{2} \in I^{0}$ can be joined by a path lying in I^{0}. This proves that c is independent of the choice e.

To define an another intrinsic constant \bar{c}, we need the following
Lemma 1.3. If $q \in \mathcal{K}$, then $I(q) \geq\left(\frac{1}{2}-\frac{1}{\mu}\right)\|q\|^{2}$.
Proof.

$$
\begin{aligned}
I(q) & =\frac{1}{2} \int_{-\infty}^{\infty}\left(|\dot{q}|^{2}+\langle q, L(t) q\rangle\right) d t-\int_{-\infty}^{\infty} V(t, q) d t \\
\left\langle I^{\prime}(q), q\right\rangle & =\int_{-\infty}^{\infty}\left(|\dot{q}|^{2}+\langle q, L(t) q\rangle\right) d t-\int_{-\infty}^{\infty}\left\langle q, V_{q}(t, q)\right\rangle d t \\
& =0 .
\end{aligned}
$$

Hence

$$
\begin{aligned}
I(q) & =I(q)-\frac{1}{2}\left\langle I^{\prime}(q), q\right\rangle \\
& =\int_{-\infty}^{\infty}\left(\frac{1}{2}\left\langle q, V_{q}(t, q)\right\rangle-V(t, q)\right) d t \\
& \geq\left(\frac{1}{2}-\frac{1}{\mu}\right) \int_{-\infty}^{\infty}\left\langle q, V_{q}(t, q)\right\rangle d t \\
& =\left(\frac{1}{2}-\frac{1}{\mu}\right) \int_{-\infty}^{\infty}\left(|\dot{q}|^{2}+\langle q, L(t) q\rangle\right) d t \\
& =\left(\frac{1}{2}-\frac{1}{\mu}\right)\|q\|^{2} .
\end{aligned}
$$

Let

$$
\bar{c}=\inf _{q \in \mathcal{K} \backslash\{0\}} I(q)
$$

Since 0 is an isolated singular point, Lemma 1.3 implies that $\bar{c}>0$. We now have two constants c and \bar{c}. To compare the two numbers c and \bar{c}, we need the following two Lemmas.

Lemma 1.4 ([4]). Let K be a compact metric space, $K_{0} \subset K$ a closed set, X a Banach space, $\chi \in C\left(K_{0}, X\right)$ and let us define a complete metric space

$$
M=\left\{g \in C(K, X) ; g(s)=\chi(s) \text { if } s \in K_{0}\right\}
$$

with the usual distance d. Let $\varphi \in C^{1}(X, \mathbf{R})$ and let us define

$$
c=\inf _{g \in M} \max _{s \in K} \varphi(g(s))
$$

Then for each sequence $\left(f_{k}\right)$ in M such that

$$
\max _{K} \varphi\left(f_{k}\right) \rightarrow c
$$

there exists a sequence $\left(v_{k}\right)$ in X such that

$$
\begin{aligned}
& \varphi\left(v_{k}\right) \rightarrow c \\
& \operatorname{dist}\left(v_{k}, f_{k}(K)\right) \rightarrow 0 \\
& \left|\varphi^{\prime}\left(v_{k}\right)\right| \rightarrow 0 \quad \text { as } \quad k \rightarrow+\infty
\end{aligned}
$$

Lemma 1.5 ([3]). Let $\left(u_{m}\right) \subset E$ be such that $I\left(u_{m}\right) \rightarrow b>0$ and $I^{\prime}\left(u_{m}\right) \rightarrow 0$. Then there is an $\ell \in \mathbf{N}$ with ℓ bounded above by a constant depending only on b, normalized functions $v_{1}, v_{2}, \ldots, v_{\ell} \in \mathcal{K} \backslash\{0\}$, a subsequence of $\left(u_{m}\right)$, and corresponding $\left(k_{m}^{i}\right) \subset \mathbf{Z}, 1 \leq i \leq \ell$, such that

$$
\begin{aligned}
& \left\|u_{m}-\sum_{1}^{\ell} \tau_{k_{m}^{i}} v_{i}\right\| \rightarrow 0 \\
& \sum_{1}^{\ell} I\left(v_{i}\right)=b
\end{aligned}
$$

and, for $i \neq j$,

$$
\left|k_{m}^{i}-k_{m}^{j}\right| \rightarrow+\infty
$$

as $m \rightarrow \infty$ along the subsequence.
In the above Lemma we say that a function v is normalized if

$$
\|v\|_{L^{\infty}}=\max _{t \in \mathbf{R}}|v(t)|
$$

occurs for $t \in[0, T]$ and $|v(t)|<\|v\|_{L^{\infty}}$ for $t<0$. We are now ready to show that $c=\bar{c}$.

Theorem 1.1. If V satisfies the conditions $\left(\mathrm{V}_{1}\right)-\left(\mathrm{V}_{4}\right)$, then $c=\bar{c}$.
Proof. Suppose $c<\bar{c}$. By Lemma 1.4 there exists a sequence $\left(u_{m}\right) \subset$ E such that $I\left(u_{m}\right) \rightarrow c$ and $I^{\prime}\left(u_{m}\right) \rightarrow 0$. Since $c>0$, we can apply Lemma 1.5 to obtain a normalized critical points $v_{1}, v_{2}, \ldots, v_{\ell}$ such that

$$
\sum_{i=1}^{\ell} I\left(v_{i}\right)=c
$$

But this contradicts the fact that $\bar{c}=\inf _{q \in \mathcal{K} \backslash\{0\}} I(q)$. Therefore $c \geq \bar{c}$. On the other hand, given any $q \in \mathcal{K} \backslash\{0\}$, consider

$$
\begin{aligned}
f(s) & =I(s q) \\
& =\frac{s^{2}}{2} \int_{-\infty}^{\infty}\left(|\dot{q}|^{2}+\langle q, L(t) q\rangle\right) d t-\int_{-\infty}^{\infty} V(t, s q) d t
\end{aligned}
$$

Observe that

$$
f^{\prime}(s)=s\left(\int_{-\infty}^{\infty}\left(|\dot{q}|^{2}+\langle q, L(t) q\rangle\right) d t-\frac{1}{s} \int_{-\infty}^{\infty}\left\langle q, V_{q}(t, s q)\right\rangle d t\right)
$$

Since $q \in \mathcal{K} \backslash\{0\}, f^{\prime}(1)=0$. Now $\left(V_{4}\right)$ implies that f attains its maximum value at $s=1$. Therefore $c \leq f(1)=I(q)$ for any $q \in \mathcal{K} \backslash\{0\}$. Hence $c \leq \bar{c}$.

2. Homoclinic solutions

In this section we discuss the existence of infinitely many solutions of (HS). Using the fact that $c=\bar{c}$, we can show that c is a critical value of I, though I does not satisfy the (PS) condition.

Theorem 2.1. If V satisfies the conditions $\left(\mathrm{V}_{1}\right)-\left(\mathrm{V}_{4}\right)$, then c is a critical value of I.

Proof. Choose a sequence $\left(q_{m}\right) \subset \mathcal{K} \backslash\{0\}$ such that $I\left(q_{m}\right) \rightarrow \bar{c}=c$. Since $I(q) \geq\left(\frac{1}{2}-\frac{1}{\mu}\right)\|q\|^{2}$ for all $q \in \mathcal{K},\left(q_{m}\right)$ is bounded in E. Hence there exists a subsequence ($q_{m_{j}}$) of (q_{m}) and $q \in E$ such that $q_{m_{j}} \rightharpoonup q$ in E. We may also assume that (q_{m}) is a normalized sequence. By Sobolev imbedding theorem we have $q_{m_{j}} \rightarrow q$ in $L_{\infty}^{\text {loc }}\left(\mathbf{R}, \mathbf{R}^{n}\right)$. Hence $q \neq 0$. Now

$$
\begin{aligned}
0=\left\langle I^{\prime}\left(q_{m_{j}}\right), \varphi\right\rangle= & \int_{-\infty}^{\infty}\left(\left\langle\dot{q}_{m_{j}}, \dot{\varphi}\right\rangle+\left\langle\varphi, L(t) q_{m_{j}}\right\rangle\right) d t \\
& -\int_{-\infty}^{\infty}\left\langle\varphi, V_{q}\left(t, q_{m_{j}}\right)\right\rangle d t .
\end{aligned}
$$

By taking limits we obtain

$$
\begin{aligned}
0 & =\int_{-\infty}^{\infty}(\langle\dot{q}, \dot{\varphi}\rangle+\langle\varphi, L(t) q\rangle) d t-\int_{-\infty}^{\infty}\left\langle\varphi, V_{q}(t, q)\right\rangle d t \\
& =\left\langle I^{\prime}(q), \varphi\right\rangle .
\end{aligned}
$$

Hence q is a critical point of I. Let $w_{m}=q_{m_{j}}-q$. Then as in Proposition 1.2 in [3] we can show that

$$
\begin{aligned}
& I\left(w_{m}\right) \rightarrow c-I(q), \\
& I^{\prime}\left(w_{m}\right) \rightarrow 0 .
\end{aligned}
$$

Now

$$
I\left(w_{m}\right)=\frac{1}{2} \int_{-\infty}^{\infty}\left(\left|\dot{w}_{m}\right|^{2}+\left\langle w_{m}, L(t) w_{m}\right\rangle\right) d t-\int_{-\infty}^{\infty} V\left(t, w_{m}\right) d t
$$

and

$$
\begin{aligned}
\left\langle I^{\prime}\left(w_{m}\right), w_{m}\right\rangle= & \int_{-\infty}^{\infty}\left(\left|\dot{w}_{m}\right|^{2}+\left\langle w_{m}, L(t) w_{m}\right\rangle\right) d t \\
& -\int_{-\infty}^{\infty}\left\langle w_{m}, V_{q}\left(t, w_{m}\right)\right\rangle d t
\end{aligned}
$$

Hence

$$
\begin{aligned}
I\left(w_{m}\right)-\frac{1}{2}\left\langle I^{\prime}\left(w_{m}\right), w_{m}\right\rangle & \geq\left(\frac{\mu}{2}-1\right) \int_{-\infty}^{\infty} V\left(t, w_{m}\right) d t \\
& \geq 0
\end{aligned}
$$

Thus

$$
0 \leq I\left(w_{m}\right)-\frac{1}{2}\left\langle I^{\prime}\left(w_{m}\right), w_{m}\right\rangle \leq I\left(w_{m}\right)+M\left\|I^{\prime}\left(w_{m}\right)\right\|
$$

for some constant M independent of m. Therefore

$$
0 \leq c-I(q) .
$$

Since $c=\bar{c}=\inf _{q \in \mathcal{K} \backslash\{0\}} I(q)$, this completes the proof.
The following fact is crucial to the existence of infinitely many homoclinic solutions of (HS).

Lemma 2.1. Let $q \in E$ be a critical point of I with $I(q)=c$. Choose \bar{q} on the ray passing through 0 and q such that $I(\bar{q})<0$. Define a function $g:[0,1] \rightarrow E$ by $g(\theta)=\theta \bar{q}$. Then
(1) $g \in \Gamma$,
(2) $\max _{\theta \in[0,1]} I(g(\theta))=c$, and
(3) for each $r>0$, there exists $\varepsilon>0$ such that $I(g(\theta))>c-\varepsilon$ implies $g(\theta) \in B_{r}(q)$.
Proof. (1) and (2) are evident from the construction of g and (V_{4}). Suppose $q=\bar{\theta} \bar{q}, 0<\bar{\theta}<1$. Then for any $\varepsilon>0$, by (V_{4}), there are constants $\theta_{-\varepsilon}$ and $\theta_{+\varepsilon}$ with $\theta_{-\varepsilon}<\bar{\theta}<\theta_{+\varepsilon}$ such that $\theta_{ \pm \varepsilon} \rightarrow \bar{\theta}$ as $\varepsilon \rightarrow 0$ and $I(\theta \bar{q})>c-\varepsilon$ if and only if $\theta \in\left(\theta_{-}, \theta_{+}\right)$. In particular for each $r>0$ there is an $\varepsilon=\varepsilon(r)$ such that $\theta \in\left(\theta_{-}, \theta_{+}\right)$implies that $g(\theta)=\theta \bar{q} \in$ $B_{r}(q)$.

At this point assume further that V satisfies one further condition
(**) There is an $\alpha>0$ such that $\mathcal{K}^{c+\alpha}$ consists of isolated points.
Observe that the above proposition corresponds to Proposition 2.22 [3].Therefore we can apply the argument in [3] to prove the existence of infinitely many homoclinic solutions of (HS). Therefore the following theorem was essentially proved in [3].

Theorem 2.2. If V satisfies $\left(\mathrm{V}_{1}\right)-\left(\mathrm{V}_{4}\right)$ and $(* *)$, then the problem (HS) has infinitely many homoclinic solutions.

Now it is natural to ask what kind of potential guarantees the condition ($* *$), that is, the discreteness of critical points of the corresponding functional I.

We now give a condition on V whose corresponding functional satisfies (**).

Theorem 2.3. If V satisfies the conditions $\left(\mathrm{V}_{1}\right)-\left(\mathrm{V}_{4}\right)$, and

$$
\begin{equation*}
\left\langle V_{q q}(t, q) p, p\right\rangle \geq \kappa|p|^{2}, \quad p, q \in \mathbf{R}^{n}, \quad \kappa>-\frac{1}{2} \tag{5}
\end{equation*}
$$

then the critical points of I are all isolated. Therefore the problem (HS) has infinitely many homoclinic solutions.

Proof. Let q be a critical point of I. Thus for any $p \in E$ we have

$$
\begin{aligned}
0=\left\langle I^{\prime}(q), p\right\rangle & =\int_{-\infty}^{\infty}(\langle\dot{q}, \dot{p}\rangle+\langle p, L(t) q\rangle) d t \\
& -\int_{-\infty}^{\infty}\left\langle p, V_{q}(t, q)\right\rangle d t
\end{aligned}
$$

Now

$$
\begin{aligned}
I(q+p)= & \frac{1}{2} \int_{-\infty}^{\infty}\left(|\dot{q}+\dot{p}|^{2}+\langle q+p, L(t)(q+p)\rangle\right) d t-\int_{-\infty}^{\infty} V(t, q+p) d t \\
= & \frac{1}{2} \int_{-\infty}^{\infty}\left(|\dot{q}|^{2}+\langle q, L(t) q\rangle\right) d t+\int_{-\infty}^{\infty}(\langle\dot{q}, \dot{p}\rangle+\langle p, L(t) q\rangle) d t \\
& +\frac{1}{2} \int_{-\infty}^{\infty}\left(|\dot{p}|^{2}+\langle p, L(t) p\rangle\right) d t-\int_{-\infty}^{\infty} V(t, q+p) d t \\
= & I(q)+\int_{-\infty}^{\infty} V(t, q) d t+\int_{-\infty}^{\infty}\left\langle p, V_{q}(t, q)\right\rangle d t \\
& +\frac{1}{2}\|p\|^{2}-\int_{-\infty}^{\infty} V(t, q+p) d t \\
= & I(q)+\frac{1}{2}\|p\|^{2}+\int_{-\infty}^{\infty}\left(V(t, q)+\left\langle p, V_{q}(t, q)\right\rangle-V(t, q+p)\right) d t
\end{aligned}
$$

Now

$$
\begin{aligned}
& V(t, q)+\left\langle p, V_{q}(t, q)\right\rangle-V(t, q+p) \\
= & \int_{0}^{1} s\left\langle p, V_{q q}(t, q+s p) p\right\rangle d t \\
= & \int_{0}^{1} s\left\langle p,\left(V_{q q}(t, q+s p)-V_{q q}(t, q)\right) p\right\rangle d t+\left\langle p, V_{q q}(t, q) p\right\rangle .
\end{aligned}
$$

Note that $\|p\|_{L^{\infty}} \leq \sqrt{2}\|p\|$. Hence

$$
\begin{aligned}
\int_{-\infty}^{\infty} & \left(V(t, q)+\left\langle p, V_{q}(t, q)\right\rangle-V(t, q+p)\right) d t \\
& =o\left(\|p\|^{2}\right)+\int_{-\infty}^{\infty}\left\langle p, V_{q q}(t, q) p\right\rangle d t .
\end{aligned}
$$

Observe that

$$
\begin{aligned}
\int_{-\infty}^{\infty}\left\langle p, V_{q q}(t, q) p\right\rangle d t & =\|p\|^{2} \int_{-\infty}^{\infty}\left\langle\frac{p}{\|p\|}, V_{q q}(t, q) \frac{p}{\|p\|}\right\rangle d t \\
& =h(p)\|p\|^{2}
\end{aligned}
$$

We see here that h is homogeneous of degree 0 and that $h \geq \kappa>-\frac{1}{2}$ by (V_{5}). Hence we now have the following estimate;

$$
I(q+p)=I(q)+\left(\frac{1}{2}+h(p)\right)\|p\|^{2}+o\left(\|p\|^{2}\right)
$$

This completes the proof.
Combining theorem 2.3 and theorem 2.3, we have
Theorem 2.4. If V satisfies $\left(\mathrm{V}_{1}\right)-\left(\mathrm{V}_{5}\right)$, then the problem (HS) has infinitely many solutions.

References

1. A. Ambrosetti and V. Coti Zelati, Non-collision orbits for a class of Keplerianlike potentials, Ann. Inst. H. Poincaré, Anal. Non Linéaire 5 (1988) 287-295.
2. A. Bahri and Paul H. Rabinowitz, A Minimax Method for a Class of Hamiltonian Systems with Singular Potentials, J. Funct. Anal. 82 (1989) 412-428.
3. V. Coti Zelati and Paul H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc. 4 (1991) 693-727.
4. J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989.

Department of Mathematics
Yonsei University
Seoul 120-749, Korea

Department of Mathematics
Kangwon National University
Kangwon 200-701, Korea

