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HOMOCLINIC ORBITS FOR SECOND

ORDER HAMILTONIAN SYSTEMS

DAE HVEON PARK AND JUNE GI KIM

o. Introduction

Let us consider the following second order Hamiltonian systems of the
form;

(HS) ij - L(t)q + Vq(t, q) = 0,

We assume that the n x n matrix L(t) satisfies

(L)
2

L(t) E C(R, R n
),

is T-periodic in t, and is symmetric and positive definite uniformly for
t E [0, T]. The function V satisfies

(V1) V E C2(R x Rn, R) and Vet, q) is T-periodic in t,
(V2 ) Vqq(t, O) = 0,
(Va) There is a p, > 2 such that

0< p,V(t,q) ~ (q, Vq(t,q)) for all q E R n
\ {O},

V. Coti Zelati and Paul H. Rabinowitz [3] proved the existence of
infinitely many homoclinic solutions for the problem (HS) under the
conditions (Vd, (V2 ), (Va), and (*). Here (*) is the condition that there
exist only finite number of critical points of the corresponding functional
I of the problem (HS) whose critical values are less than a certain number
and will be explained later. They have even suggested that the condition
(*) could be replaced with the weaker condition (**) in [3] ,which asserts
the discreteness of the critical values instead of the finiteness of the
critical values as in (*) and will be explained below. Moreover they have
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shown that the same results could be obtained under a weaker condition
(**) if we further assume that V satisfies one more condition

(V4 ) For all eE sn-l,s 1-+ ~(e,Vq(t,se» is an increasing function of
s.

Therefore it is natural to ask with what kind of potentials the corre
sponding functionals satisfy (**). In this paper we give the condition on
V whose corresponding functional satisfies (**) and so (HS) with this
potential has infinitely many homoclinic solutions.

1. Preliminaries

Let E = W1,2(R,RR) under the usual norm

Thus E is a Hilbert space and E c CO(R, RR), the space of continuous
function q on R such that q(t) --+ 0 as ItI --+ 00. We will seek solutions
of (HS) as critical points of the functional I associated with (HS) and
given by

1100 jooI(q) = 2 _00(141 2 + (q,L(t)q))dt - -00 V(t,q)dt.

By (L),

can and will be taken as an equivalent norm on E. If q E E, j E Z,
and Tj(q) = q(t - jT), then I(Tjq) = I(q). Hence I possesses a Z
action. It is standard that the critical points of I in E correspond to the
homoclinic solutions for (HS). However to apply the standard variational
methods it is necessary that I satisfy the Palais-Smale condition which
is abbreviated as the (PS) condition. But our functional does not satisfy
the (PS)-condition.
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LEMMA 1.1. I does not satisfies the (PS) condition.

Proof. Suppose b > 0 is a critical value of I with corresponding critical
point q. Let U m = q + Tmq. Then

Observe that V(t,q + Tmq) - V(t,q) - V(t,Tmq) -. 0 uniformly on
[-R, R], 0 < R < +00. Choose 6 > 0 so that

Ixl < 6 implies that IVq(t,x)1 $ Ixl·

Choose M > 0 so that

IIq + TmqllLoo $ v'2l1q + Tmqll

$ 2v'2l1qll
< M < +00.

Let M 1 = sUP6$1~I$M IVq(t,e)l· Then we have

M1IVq(t,x)1 $ (1+ T)lxl for Ixl $ M.

Thus

IV(t, q +Tmq) - V(t, Tmq)1 $ (q, Vq(t,8q + Tmq)}
M 1

$ (1 + T )lql(lql + ITmql), 0 < 8 < 1.

Hence

f IV(t, q+ Tmq) - V(t, Tmq)ldt
J1tl>R



106 Dae Hyeon Pahk and June Gi Kim

= r l(q,Yq(t,8q+Tmq))ldt
J1tl>R

~ (1 + ~l)( r IqI2dt)t( r (lql2 + ITm qI2)dt)1/2
J'tl>R J'tl>R

~ 211qll(1 + ~l)( r IqI2dt)1/2.
J'tl>R

Given e > 0, we can choose R sufficiently large so that

1- r Yet, q)dtl = r Yet, q)dt
J'tl>R J1tl>R

~ e r Iql2dt
J1tl>R

and

r Iql2dt < e.
J1tl>R

Therefore J~oo(Y(t,q+ Tmq) - Y(t,q) - Y(t,Tmq))dt ~ 0 as m ~ 00.
Note also that IIq + Tmqll2 = IIqll2 + IITmqll2 + em, em ~ 0 as m -+ +00.
Thus I(u m ) -+ 2b. Let us now check l'(um ). For each <p E E, we have

(1'(um), cp) = (1'(q+ Tmq), cp)

= i:(q + Tmq,rp) + (cp,L(t)(q + Tmq)))dt

-i:{cp, Yq(t, q+ Tmq))dt

= - i: (<p, Yg(t, q + Tmq) - Vq(t, Tmq) - Vq(t, q))dt.

Hence I'(u m ) -+ O. However

lIum - unll = IITmq - Tnqll

= Jlq - Tn-mqll

= 211qll + eln-ml'
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where cln-rnl --+ 0' as In - ml --+ +00. Therefore (urn) has no convergent
subsequence.

Given q E E \ {O}, define a function f : (0,00) --+ R by

f(8) = I(8q)
82 1

00

1
00

= 2" -00(I~W + (q,L(t)q})dt - -00 V(t,8q)dt.

Then

1'(8) = 8 i: (141 2 + (q,L(t)q})dt - i:(q, Vq(t,8q)}dt

= 8 (I: (141 2 + (q,L(t)q})dt - ~L: (q, Vq(t,8q)}dt) .

Now (V4) implies that f : (0,00) --+ R has a unique maximum point.
Moreover (VI )-(V3) implies that

Here

( ){ ~ MlxlP uniformly in t for
V t,x

~ mlxlP uniformly in t for

m = mintER V(t,x) > 0 and
12:1=1

M = max tER Vet, x) > O.
12:1=1

Ixl ~ 1,

Ixl 2:: 1.

Hence f(8) --+ -00 as 8 --+ +00. Observe also that I(q) = tllqll2 +
o(lIqIl2). Therefore 0 is an isolated singular point of I. Choose a point
e -10 such that I(e) ~ O. Let

c = inf max I(g(O)),
gEre 8E[O,1]

where
r e = {g E C([O,l],E): g(O) = 0, g(l) = e}.
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Since I(q) = tllqll2 + o(lIqIl2), c> o.
From now on we use the following notations;

r ={q E EII(q) ::; s}, Is = {q E EII(q) ~ s},

I! =Ia n I b
, IC = the set of critical points of I

IC: =IC n I!.

Recall that the key roles (PS) plays in the proof of the standard De
formation Theorem is that it provides a 6 > 0 such that III'(x)1I ~ 6
for all x E I~: for some c > 0 if IC( b) =ICt = 0 and an appropriately
modified statement if IC(b) =1= 0. Since our functional I does not satisfy
the (PS)-condition, we cannot use the standard Deformation Theorem
in its naive form. However V. Coti Zelati and Paul H. Rabinowitz [3]
escaped from this difficulty by imposing the condition

(*) there is an (}' > 0 such that JC+cr /Z
contains only finitely many critical points of I.

Usually the value of c depends on the choice of e. But we have the
following

LEMMA 1.2. If V satisfies (Vt}-{V3 ), then c is independent of the
choice of e.

Proof. Define a function f : (0, 00) -+ R by

1(s) = I(sq)

s2100 100

="2 _00(1412 + (q,L(t)q})dt - -00 V(t,sq)dt.

Then

1'(s) = s 1.:<1412 + (q,L(t)q})dt -1.: (q, Vq(t,sq)dt

:5 s i: (14/2 + (q,L(t)q»)dt -;.i:V(t,sq)dt
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,.,. s21°O 100

= -(- (I~W + (q, L(t)q))dt - Vet, sq)dt)
s ,.,. -00 -00
,.,. s2 roo 100

$ ~(2" 1_00(14\2 + (q, L(t)q) )dt - -00 Vet, sq)dt)
,.,.

= - f(s).
s

Hence we obtain f'(s) - #/sf(s) $ O. This implies that f(s)/sIJ is a
decreasing function of s. Therefore any two points el # 0 and e2 # 0
such that el E [0 and e2 E JO can be joined by a path lying in ro. This
proves that c is independent of the choice e.

To define an another intrinsic constant C, we need the following

LEMMA 1.3. H q E A" then I(q) ~ (l- ~)l\qIl2.

Proof·

1100 100

I(q) = 2 -00(\~W + (q,L(t)q))dt - -00 V(t,q)dt

(I'(q),q) = f: (I~W + (q,L(t)q})dt - i:(q, Vq(t,q)}dt

= O.

Hence

I(q) = I(q) - ~(I'(q),q)

roo 1
= 1-00(2(q, Vq(t, q)) - Vet, q))dt

1 1 100

~ (2 - -) (q, Vq(t,q))dt
# -00

1 1 /00= (2" - -) (1412 + (q,L(t)q})dt
,.,. -00

1 1
=(2-;)l\qI\2.
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c = inf l(q).
qEA:\{O}

Since 0 is an isolated singular point, Lemma 1.3 implies that c> O. We
now have two constants c and c. To compare the two numbers c and c,
we need the following two Lemmas.

LEMMA 1.4 ([4]). Let K be a compact metric space, K o C K a closed
set, X a Banach space, X E C(Ko, X) and let us define a complete metric
space

M = {g E C(K,X); g(s) = Xes) if s E K o}

with the usual distance d. Let r.p E CI(X, R) and let us define

c = inf max r.p(g(s)).
gEM sEK

Then for each sequence (Ik) in M such that

there exists a sequence (Vk) in X such that

r.p(Vk) -+ c,

dist(vk,Ik(K)) -+ 0,

Icp'(Vk)l-+ 0 as k -+ +00.

LEMMA 1.5 ([3]). Let (u m ) C E be such that l(um ) -+ b > 0 and
l'(u m ) -+ O. Then there is an fEN with f bounded above by a constant
depending only on b, normalized functions Vb V2, ... ,Vi E K \ {OJ, a
subsequence of (u m ), and corresponding (k:n) c Z, 1 SiS f, such that

i

lIum - LTk;"vill-+ 0,
I
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and, for i =1= j,
Ik:n - k!n I -+ +00

as m -+ 00 along the subsequence.

In the above Lemma we say that a function v is normalized if

IIvllLOO = max Iv(t)1
tER

occurs for t E [0, T] and Iv(t)1 < IIvllLoo for t < o. We are now ready to
show that c = c.

THEOREM 1.1. HV satisnes the conditions (V1 )--{V4 ), then c = c.
Proof. Suppose c < c. By Lemma 1.4 there exists a sequence (urn) C

E such that I(urn) -+ c and I' (urn) -+ O. Since c > 0, we can apply
Lemma 1.5 to obtain a normalized critical points VI, v2, ... , Vi such that

i

LI(vi) = c.
i=l

But this contradicts the fact that c = infqEK:\{O} I(q). Therefore c ~ c.
On the other hand, given any q E K. \ {O}, consider

f(s) = I(sq)

s21°O 100

="2 -00(lql2 + (q,L(t)q))dt - -00 V(t,sq)dt.

Observe that

100 1100
/'(s) = s( _00(1412 + (q,L(t)q))dt -:; -00 (q, Vq(t,sq))dt).

Since q E K. \ {O}, f'(l) = o. Now (V4) implies that f attains its
maximum value at s = 1. Therefore c:S; f(l) = I(q) for any q E K\ {O}.
Hence c :s; c.



112 Dae Hyeon Pahk and June Gi Kim

2. Homoclinic solutions
In this section we discuss the existence of infinitely many solutions of

(HS). Using the fact that c = C, we can show that c is a critical value
of I, though I does not satisfy the (PS) condition.

THEOREM 2.1. H V satisfies the conditions (V1 )-{V4 ), then c is a
critical value of I.

Proof. Choose a sequence (qm) C IC \ {O} such that I(qm) -+ C = c.
Since I(q) 2: (! - ~)lIqIl2 for all q E IC, (qm) is bounded in E. Hence
there exists a subsequence (qmj) of (qm) and q E E such that qmj ->. q in
E. We may also assume that (qm) is a normalized sequence. By Sobolev
imbedding theorem we have qmj -+ q in L~C(R,Rn). Hence q =1= O. Now

0= (I'(qmj)'<P) =L:«(qmj'ep) + (<p,L(t)qmj})dt

-L: (<p, Vq(t, qmj )}dt.

By taking limits we obtain

0= L:({q,ep) + (<p,L(t)q})dt - L: (<p, Vq(t,q)}dt

= (I'(q), <p).

Hence q is a critical point of I. Let W m = qmj -q. Then as in Proposition
1.2 in [3] we can show that

I(wm) -+ c - I(q),

I'(wm) -+ o.
Now

and

(I'(wm),wm) =L:(/wm I
2 + (wm,L(t)wm})dt

-L: (wm, Vq(t, wm)}dt.
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Hence

1 J1, Joo1(wm) - -(1'(wm),Wm) ~ (-2 -1) V(t,wm)dt
2 -00

~ O.

Thus
1o~ 1(wm) - 2(1'(wm),Wm} ~ 1(wm) +MII1'(wm)1I

for some constant M independent of m. Therefore

o~ c - 1(q).

Since c = c = infqEK:\{O} 1(q), this completes the proof.

The following fact is crucial to the existence of infinitely many homo
clinic solutions of (HS).

LEMMA 2.1. Let q E E be a critical point of I with 1(q) = c. Choose
q on the ray passing through 0 and q such that 1(q) < O. Define a
function 9 : [0, 1] ~ E by g(6) = 6q. Then

(1) gEr,
(2) maxOE[O,l] 1(g(6)) = c, and
(3) for each r > 0, there exists e > 0 such that 1(g(6» > c-e implies

g(6) E Br(q).

Proof. (1) and (2) are evident from the construction of 9 and (V4 ).

Suppose q = "Bq, 0 < "8 < 1. Then for any e > 0, by (V4), there are
constants 6_e and 6+e with 6_e < "8 < 6+e such that 6±e ~ "8 as e ~ 0
and 1(6q) > c - e if and only if 6 E (6_,6+). In particular for each r > 0
there is an e = e(r) such that 6 E (6_,6+) implies that g(6) = 6q E
Br(q).

At this point assume further that V satisfies one further condition

(**) There is an a > 0 such that K;c+n consists of isolated points.

Observe that the above proposition corresponds to Proposition 2.22
[3].Therefore we can apply the argument in [3] to prove the existence
of infinitely many homoclinic solutions of (HS). Therefore the following
theorem was essentially proved in [3].
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THEOREM 2.2. H V satisfies (Vd-{V4 ) and (**) ,then the problem
(HS) has infinitely many homoclinic solutions.

Now it is natural to ask what kind of potential guarantees the condi
tion (**), that is, the discreteness of critical points of the corresponding
functional I.

We now give a condition on V whose corresponding functional satisfies
(**).

THEOREM 2.3. H V satisfies the conditions (Vd-{V4), and

1
K, >-

2

then the critical points of I are all isolated. Therefore the problem (HS)
has infinitely many homoclinic solutions.

Proof. Let q be a critical point of I. Thus for any pEE we have

0= (I'(q),p) = i:((4,p) + {p,L(t)q))dt

-i: (P, Vq(t,q))dt.

Now

11~ 1~I(q +p) = 2" _~ (14 + lW + (q +p,L(t)(q +p)))dt - _~ V(t,q +p)dt

= ~L: (141 2 + (q, L(t)q) )dt + L:((4,p) + (p, L(t)q) )dt

11~ 1~+ 2" _~ (lpl2 + (p,L(t)p))dt - _~ V(t,q + p)dt

= I(q) +L: V(t,q)dt +L:(p, Vq(t,q))dt

1 1~+ 2"lIpll2 - _~ V(t,q+p)dt

1 1~=I(q) + 2"lIpll2 + _~(V(t,q) + (P, Vq(t,q)) - V(t,q + p))dt.
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Now

V(t,q) + (p, Vq(t,q)} - V(t,q +p)

= 11

s(p, Vqq(t,q + sp)p}dt

= 11

s(p, (Vqq(t, q + sp) - Vqq(t, q»p}dt + (p, Vqq(t, q)p).

Note that IIpIILoo :::; J2l1pll. Hence

i:(V(t, q) + (p, Vq(t, q)} - Vet, q +p»dt

= o(lIpIl2) +i:(p, Vqq(t,q)p}dt.

Observe that

j= 2j= P P_= (p, Vqq(t,q)p}dt = IIpll _= (iiPij' Vqq(t,q)iiPij}dt

= h(p)lIpIl2.

We see here that h is homogeneous of degree 0 and that h ~ K. > - t by
(Vs). Hence we now have the following estimate;

1
I(q +p) = I(q) +(2 +h(p»llpIl2 +o(llpI12).

This completes the proof.

Combining theorem 2.3 and theorem 2.3, we have

THEOREM 2.4. HV satisnes (V1 )-(VS ), then the problem (RS) has
infinitely many solutions.
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