
Bull. Korean Math. Soc. 51 (2014), No. 5, pp. 1503–1510

http://dx.doi.org/10.4134/BKMS.2014.51.5.1503

PERSISTENCE OF HOMOCLINIC ORBITS AFTER

DISCRETIZATION OF A TWO DIMENSIONAL

DEGENERATE DIFFERENTIAL SYSTEM

Noureddine Mehidi and Nadia Mohdeb

Abstract. The aim of this work is to construct a general family of two
dimensional differential systems which admits homoclinic solutions near

a non-hyperbolic fixed point, such that a Jacobian matrix at this point

is zero. We then discretize it by using Euler’s method and look after the
persistence of the homoclinic solutions in the obtained discrete system.

1. Introduction

Consider the vector field

(1)

{ .
x = F (x, y)
.
y = G(x, y)

where (.) = d/dt and F and G are functions of class C1 from R2 into R. We
suppose that the origin is an isolated equilibrium point of system (1) and that
the Jacobian matrix at this point has two real eigenvalues λ1 and λ2. In the
case where only λ1 is null, the origin is a node, a saddle or a point with one
parabolic and two hyperbolic sectors [12]. When λ1 = λ2 = 0, the origin is
non-hyperbolic and the situation is more complicated; In the case where the
matrix of the linear part of system (1) is not zero, a local description of system
(1) has been studied in [1].

In the case of non-degenerate homoclinic orbits of an autonomous equa-
tion, references ([2], [10], [14]) give an answer to the question of persistence
of homoclinic solutions in the discretized system. The problems of numerical
computation of homoclinic and heteroclinic orbits and that of approximation
of phase portraits are studied in ([3]-[10], [14]).

Knowing that after discretization by the Euler’s method the solution pulls
outwards, contrary to the idea which consists in believing that homoclinic so-
lutions do not persist in the associated discretized system, this work aims to
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show that in degenerate systems, this is not necessarily the case. Thus, we
consider a general family of differential equations with zero linear part, and
homoclinic orbits surrounding the fixed point, and we study the persistence
of these solutions after Euler discretization. We then consider the differential
system

(2)

{ .
x = (y − ϕ1 (x)) (ϕ2 (x)− y) f (x, y)
.
y = x (y − ψ (x)) g (x)

where f is of class C1 from R2 into R, g, ϕ1, ϕ2 and ψ are of class C1 from R
into R and ϕ1, ϕ2 and ψ are surjective. We have already study this problem
[13] in the case of the differential system corresponding to the iteration of the
quadratic complex polynomial z2 + c. In all what follows, we assume that the
origin is the unique singular point of system (2) and,

i) ∀x, y ∈ R, f (x, y) > 0, g (x) > 0.
ii) ϕ1 (0) = ϕ2 (0) = ψ (0) = 0.
iii) ∀x ∈ R, ϕ′1 (x) > 0, ϕ′2 (x) < 0, ψ′ (x) > 0.
iv) ∀x > 0, ϕ1 (x) > ψ (x) > ϕ2 (x) and ∀x < 0, ϕ1 (x) < ψ (x) < ϕ2 (x).

In Section 2, we prove that all trajectories of system (2) which start from
the region R =

{
(x, y) ∈ R2; y > ϕ1 (x) , y > ϕ2 (x) , x < 0

}
are homoclinic.

In Section 3, we prove that for a r0 > 0, solutions passing through the set

R̄ =
{

(x, y) ∈ R2;x2 + y2 ≤ r20, y > ϕ1 (x) , y > ϕ2 (x) , x < 0
}

remain homoclinic in the discrete system obtained by Euler discretization.

2. Homoclinic orbits in the continuous system

Under hypotheses (i)-(iv), the following proposition provides the existence
of homoclinic solutions in system (2).

Proposition 1. The orbits of system (2) starting from region R are homoclinic.

Figure 1. Vector field (2).
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Proof. Let γ0 = (x(t), y(t)) be the trajectory of system (2) starting from a
point (x0, y0) of R.

The trajectory γ0 crosses the curve y = ϕ2 (x) and enters the region{
(x, y) ∈ R2; y > ϕ1 (x) , y < ϕ2 (x)

}
which is invariant under system (2) (Figure 1). In this region x(t) is increasing
and upper bounded. Besides y(t) is bounded and increasing or decreasing
following the fact that it crosses the curve y = ψ (x) or not. Hence, γ0 tends
toward (0, 0) whenever t→ +∞.

In the same way, it can be proved that γ0 tends toward (0, 0) whenever
t→ −∞. �

Remark 1. The case where the orbits of system (2) are started from the region{
(x, y) ∈ R2; y < ϕ1 (x) , y < ϕ2 (x) , x < 0

}
is similar.

3. Homoclinic orbits in the discretized system

A discretization of (2) by the Euler’s method gives

(3)

{
xn+1 = xn + h (yn − ϕ1 (xn)) (ϕ2 (xn)− yn) f (xn, yn)
yn+1 = yn + hxn (yn − ψ (xn)) g (xn)

where h > 0 is the stepsize of the discretization.
In all what follows, (x0, y0) is a point of the region

{
(x, y) ∈ R2; y > ψ (x)

}
.

Suppose that the assumptions (i)-(iv) above are satisfied for system (3). We
have the following lemmas:

Lemma 1. There exist a h0 > 0 and a r0 > 0 such that for any h ∈ (0, h0],
any point (x0, y0) in the ball Br0 =

{
(x, y) ∈ R2;x2 + y2 ≤ r20

}
has a unique

predecessor in Br0+1.

Proof. We have

xn+1 = xn + h

(
yn+1 + hψ (xn) g (xn)

1 + hg (xn)
− ϕ1 (xn)

)
×
(
ϕ2 (xn)− yn+1 + hψ (xn) g (xn)

1 + hg (xn)

)
f

(
xn,

yn+1 + hψ (xn) g (xn)

1 + hg (xn)

)
.

Let us denote for a given (xn+1, yn+1),

F (x) = x+ h

(
yn+1 + hψ (x) g (x)

1 + hg (x)
− ϕ1 (x)

)
×
(
ϕ2 (x)− yn+1 + hψ (x) g (x)

1 + hg (x)

)
f

(
x,
yn+1 + hψ (x) g (x)

1 + hg (x)

)
−xn+1.

There exist a h0 > 0 and a r0 > 0 such that for any h ∈ (0, h0] and for
(xn+1, yn+1) in Br0 ,

F (xn+1 − 1) < 0
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and
F (xn+1 + 1) > 0.

Moreover, for any x in ]xn+1 − 1, xn+1 + 1[, F ′ (x) > 0. As F is continuous,
equation F (x) = 0 admits a unique solution x in ]xn+1 − 1, xn+1 + 1[. For xn
in ]xn+1 − 1, xn+1 + 1[, we get yn = (yn+1 + hxnψ (xn) g (xn)) / (1− hxn) ∈
]yn+1 − 1, yn+1 + 1[. �

Lemma 2. There exist a h0 > 0 and a r0 > 0 such that for any h ∈
(0, h0] and any (x0, y0) in the set

{
(x, y) ∈ R2;x2 + y2 ≤ r20, y > ϕ1 (x)

}
, the

solution (xn, yn)n∈N of system (3) through (x0, y0) does not enter the region{
(x, y) ∈ R2; y < ϕ1 (x)

}
.

Proof. For xn < 0,

yn+1 − ϕ1 (xn+1)

≥ (yn − ϕ1 (xn))
(
1 + hxng (xn)− h (ϕ2 (xn)− yn) f (xn, yn)ϕ′1 (c)

)
for some c in ]xn, xn+1[ if xn < xn+1 or c in ]xn+1, xn[ if xn > xn+1. Hence,
there exist a h0 > 0 and a r0 > 0 such that for any h ∈ (0, h0] and for
x20 + y20 ≤ r20, we get by induction

yn+1 − ϕ1 (xn+1) > 0, ∀n ∈ N
whenever y0 − ϕ1 (x0) > 0. �

Lemma 3. There exist a h0 > 0 and a r0 > 0 such that for any h ∈ (0, h0] and
for any (x0, y0) in the set

{
(x, y) ∈ R2;ϕ1 (x) < y < ψ (x)

}
with x20 + y20 ≤ r20,

the solution (xn, yn)n∈N of system (3) through (x0, y0) does not leave this set.

Proof. We have,

yn+1 − ψ (xn+1) = (yn − ψ (xn)) (1 + hxng (xn)) + (xn − xn+1)ψ′ (d) ,

where d ∈ ]xn, xn+1[ if xn < xn+1 and d ∈ ]xn+1, xn[ if xn > xn+1. Hence,

yn+1 − ψ (xn+1)

≤ (yn − ψ (xn))
(
1 + h (xng (xn)− (ϕ2 (xn)− yn) f (xn, yn)ψ′ (d))

)
.

Using Lemma 2, there exist a h0 > 0 and a r0 > 0 such that for any h ∈ (0, h0]
and for x20 + y20 ≤ r20, yn+1 − ψ (xn+1) < 0 if y0 < ψ (x0). �

Lemma 4. For any point (x0, y0) in R, there exists n2 in N∗ such that yn2 <
ϕ2 (xn2).

Proof. Suppose that the solution (xn, yn)n∈N of system (3) started from (x0, y0)
does not leave the region{

(x, y) ∈ R2;x < 0, y > ϕ2 (x)
}

.

The sequences (xn)n∈N and (yn)n∈N are decreasing in this region. Thus, the se-
quence (xn)n∈N is down bounded. It converges toward a limit l < x0. Moreover,
following Lemma 2, the sequence (yn)n∈N is down bounded, thus converges.
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A passage to the limit implies that the limit of the sequence (xn, yn)n∈N is the
unique stationary point (0, 0) of system (2). There is a contradiction with the
fact that l < 0. �

Lemma 5. There exist a h0 > 0 and a r0 > 0 such that for any h ∈ (0, h0]
and for any (x0, y0) in the set{

(x, y) ∈ R2;x2 + y2 ≤ r20, x < 0, ϕ1 (x) < y < ϕ2 (x)
}
,

the solution (xn, yn)n∈N of system (3) through (x0, y0) does not enter the region{
(x, y) ∈ R2;x < 0, y > ϕ2 (x)

}
.

Proof. There is a c ∈ ]xn, xn+1[ such that

ϕ2 (xn+1)− yn+1 = (ϕ2 (xn)− yn) (h (yn − ϕ1 (xn)) f (xn, yn)ϕ′2 (c) + 1)

− hxn (yn − ψ (xn)) g (xn) .

It follows that, for xn < 0,

ϕ2 (xn+1)− yn+1

≥ (ϕ2 (xn)− yn) (1 + h (yn − ϕ1 (xn)) f (xn, yn)ϕ′2 (c)− hxng (xn)) .

Thus, there exist a h0 > 0 and a r0 > 0 such that for any h ∈ (0, h0] and for
x20 + y20 ≤ r20,

ϕ2 (xn+1)− yn+1 > 0

since ϕ2 (x0) > y0. �

Given a point (x0, y0), according to Lemma 1, let be the solution

(x−n, y−n)n∈N

of system
x−n = x−n−1 + h (y−n−1 − ϕ1 (x−n−1)) (ϕ2 (x−n−1)− y−n−1)

× f (x−n−1, y−n−1)

y−n = y−n−1 + h (y−n−1 − ψ (x−n−1))x−n−1g (x−n−1)

satisfying (x−1, y−1) ' (x0, y0) and the condition that there exist a h0 > 0 and
a r0 > 0 such that

(x−n−1, y−n−1) ' (x−n, y−n)

whenever (x−n, y−n) ≤ r20.

Lemma 6. There exist a h0 > 0 and a r0 > 0 such that for any h ∈ (0, h0]
and for any (x0, y0) in R̄,

i)
∀n ∈ N, y−n > ψ (x−n) .

Moreover,
∃ k ∈ N∗, y−k < ϕ1 (x−k) .

ii)
∀n > k, y−n < ϕ1 (x−n) .
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Proof. i) Suppose that

∃ p ∈ N∗, y−p < ψ (x−p) .

It follows that the sequence (y−n)−n>−p of successors of y−p satisfies y−n <

ψ (x−n) (because it can be proved by induction that if y0 < ψ (x0) , then
yn < ψ (xn) for all n in N∗). It follows in particular that y0 < ψ (x0). This is
a contradiction.

In order to prove the second part of (i), suppose that the solution

(x−n, y−n)n∈N

does not leave the region
{

(x, y) ∈ R2 ; y > ϕ1 (x) , x > 0
}

.
The sequence (x−n)n∈N is increasing and (y−n)n∈N is decreasing in this

region. The sequence (x−n)n∈N is upper bounded. It converges toward a
limit l > x0. Moreover, the sequence (y−n)n∈N is down bounded, and then
converges. The limit of the sequence (x−n, y−n)n∈N is (0, 0). There is a con-
tradiction with the fact that l is strictly positive.

ii) Suppose that there is q in N∗, q > k such that y−q > ϕ1 (x−q). It follows
that for any n in N∗ such that n < q, we have y−n > ϕ1 (x−n). In particular,
y−k > ϕ1 (x−k). This is a contradiction. �

We can now give and prove the main result:

Theorem. There exist a h0 > 0 and a r0 > 0 such that for any h ∈ (0, h0] and
for any point (x0, y0) in R̄, the solution (xn, yn)n∈N of system (3) emanating
from (x0, y0) is homoclinic to the origin.

Proof. By using Lemma 4, the solution (xn, yn)n∈N of system (3) started from

point (x0, y0) enters the region
{

(x, y) ∈ R2;ψ (x) < y < ϕ2 (x)
}

and,
- either the solution (xn, yn)n∈N remains in this region, then the sequence
(xn)n∈N is increasing and upper bounded while the sequence (yn)n∈N is de-
creasing and down bounded,
- or the solution (xn, yn)n∈N enters the region

{
(x, y) ∈ R2;ϕ1 (x) < y < ψ (x)

}
,

then by Lemmas 2, 3 and 5, it does not leave it. Hence, the sequences (xn)n∈N
and (yn)n∈N are increasing and upper bounded.

Consequently, in the two cases, the sequence (xn, yn)n∈N is convergent. Its
limit is (0, 0), the unique stationary point of (3).

In the same way using Lemma 6, it can be proved that the sequence

(x−n, y−n)n∈N

which is well defined according to Lemma 1, converges toward (0, 0) when n
tends toward +∞. �

Remark 2. The same work can be realized if we take
.
y = (y − ψ (x)) (y − ψ1 (x)) g (x)

instead of
.
y = x (y − ψ (x)) g (x) ,
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where ψ1 is a C1 and strictly increasing function such that ψ1 (0) = 0 and,{
ϕ1 (x) < ψ1 (x) < ϕ2 (x) if x > 0
ϕ1 (x) > ψ1 (x) > ϕ2 (x) if x < 0.

Remark 3. It can be proved in the same way that there exist a h0 > 0 and a
r1 > 0 such that for any h ∈ (0, h0] the solutions of systems (2) and (3) started
from the region

{
(x, y) ∈ R2;x < 0, x2 + y2 ≤ r21, y < ϕ1 (x) , y < ϕ2 (x)

}
, are

homoclinics.
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