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1. Introduction

Researchers have turned to dynamical systems theory in 
studying transition to turbulence and this helped in gaining 
a fresh perspective in understanding the phenomenon. In 
dynamical systems theory, the presence of coherent 
structures in turbulent flow may be seen as 
low-dimensional invariant sets in phase space[4]. These 
coherent structures, which are spatiotemporally organized, 
appear when a turbulent state visits the neighborhood of 
such an invariant set for a substantial fraction of time.

The Navier-Stokes equation, which governs turbulent 
motion of viscous fluids, is an example of an infinite- 
dimensional dynamical system which may be 
approximately reduced to finite dimension[4]. In this 
equation, the simplest invariant solution can be an 
equilibrium or a time-periodic one. Researchers have 
searched for invariant solutions and analyzed numerically 
the long-term behavior on their stable and unstable 
manifolds. The computation of stable and unstable 
manifolds in state space is relevant in the study of the 
transition process.

In wall-bounded shear flows, where laminar state is 
often linearly stable during transition to turbulence, an 
invariant set with only a single unstable direction in phase 

space is called an ‘edge state’[10]. The edge state has a 
special property in which its stable manifold separates the 
laminar and turbulent flows. State points on this laminar- 
turbulent boundary, known as the ‘edge of chaos’[1,10], is 
attracted to the edge state. For initial conditions just 
exceeding a critical value, corresponding state points will 
escape out of the laminar basin along the unstable 
manifold of the edge state.

We study a periodic edge state to the incompressible 
Navier-Stokes equation in plane Couette flow. It is shown 
that computation of its unstable manifold leads to several 
orbits which return to the edge state along its stable 
manifold. This suggests the formation of a homoclinic 
connection, i.e., the intersection of the unstable and stable 
manifolds for the same saddle-type invariant solution. Two 
of the homoclinic orbits found move closer to each other 
for decreasing Reynolds until they eventually collide.

2. Transitional Plane Couette Flow

Shown above is the flow configuration of plane Couette 
flow that is employed in this study. This is composed of 
two parallel flat plates that are separated by a distance 2h. 
The wall-parallel directions are the streamwise x- and 
spanwise z- directions while the wall-normal direction is 
the y- direction. The parallel plates move with the same 
velocity in the direction opposite each other, i.e., the 
upper plate is moving with velocity +U and the lower 
plate is moving with velocity -U.

The velocity field u = (u,v,w) for an incompressible 
viscous flow is governed by the Navier-Stokes equation 
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Fig. 1 Plane Couette flow configuration

and continuity equation. The Reynolds number (Re) is 
written as Re = Uh/ν, where ν is the kinematic viscosity. 
The nondimensionalized Navier-Stokes equation and 
continuity equation are given as
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The boundary condition of the flow is set to no-slip 
condition on the surface of the wall.

We consider Couette turbulence under similar conditions 
as those investigated by Hamilton et. al.[2]. Under this 
minimal plane Couette conditions, coherent structures in 
the near-wall region exhibit a regeneration cycle, which 
consists of formation and breakdown of streamwise 
vortices and low-velocity streaks. These streaks and 
vortices display complex behavior in both space and time. 
The cyclic dynamics of the regeneration process in 
near-wall turbulence is the mechanism that sustains these 
coherent structures.

We perform direct numerical simulation of the 
incompressible Navier-Stokes equation for plane Couette 
turbulence by using a spectral method. The 
time-advancement is done by using 2nd-order 
Adam-Bashforth method for the nonlinear terms and 
Crank-Nicolson method for the viscous terms. The 
nonlinear time-periodic solution is obtained by using 
Newton-Krylov iteration(see [3] and [5]). The flow is 
supposed to have periodic boundary condition in the 
wall-parallel x and z directions. The computational periods 
are Lx = 1.755πh for the streamwise direction and Lz = 
1.2πh for the spanwise direction. The dealiased Fourier 
expansions are employed in the wall-parallel directions and 
Chebyshev-polynomial expansion in the wall-normal 

direction. Numerical computations are carried out on a 
resolution of 32 x 33 x 32 number of grid points in the 
streamwise, wall-normal, and spanwise directions, 
respectively. The number of degrees of freedom of the 
discretized system of the Navier-Stokes equation is N = 
11,117. The spatial symmetries of Couette turbulence are 
observed without imposition in the flow. These two are as 
follows: reflection with respect to the plane of z = 0 
accompanied by half period Lx/2 streamwise shift, and 
180o rotation along the line x = y = 0 accompanied by 
half period Lz/2 spanwise shift. The shift-reflect and 
shift-rotate spatial symmetries are written as
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The frictional force caused by the moving walls injects 
energy, where it is consumed at small scales over the 
whole flow field by viscous dissipation. The input (I) and 
dissipation (D) energy rates, both normalized with respect 
to their laminar state values, are given as
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where  in (3) is the streamwise velocity and   in 
(4) is the vorticity vector. The laminar state is represented 
by input and dissipation energy rates whose temporal 
average is equal to 1, while the turbulent state has input 
and dissipation energy rates whose temporal average is 
greater than 1. The gentle unstable periodic orbit 
(UPO)[3,5] lies in between the laminar and turbulent 
regions.

The UPO considered in this paper has only one 
unstable direction and thus it is an edge state. This UPO 
might be the only edge state in this computational domain. 
For longer streamwise period, another edge state the 
Nagata’s lower-branch steady solution[7,9] appears. This 
UPO and its stable manifold can form the boundary 
separating laminar and turbulent flows.

3. Orbit Continuation

The UPO is extended by performing an orbit 
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continuation algorithm[8,11]. Consider an N-dimensional 
dynamical system


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where  ∈ represents a state point in an 

N-dimensional state space and  ∈ represents 
the vector field obtained from the Navier-Stokes equation. 
The orbitis   given by the integration of equation (5) 
at any time . The initial condition is set as

     (6)

where  is some point on the UPO,  is the unstable 
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Fig. 3 Homoclinic orbits of the UPO at Re = 400 which are 
computed using single-shooting continuation. The two red 
orbits represent the same homoclinic orbits found by van 
Veen and Kawahara. The black orbit represents the new 
homoclinic orbit found in the present study

eigenvector at , and   is a small parameter. We 
integrate (5) and monitor the behavior of the system by 
observing some physical quantities with time. In this paper 
we observe the values of the input and dissipation energy 
rates that are given in (3) and (4), respectively.

4. Homoclinic Orbits and Tangency

At the beginning a state point close to the UPO goes 
around its orbit for some time until it eventually escapes 
along the unstable manifold. As it is extended along the 
unstable direction, we observe that the orbit briefly return 
to the vicinity of the UPO along its stable manifold, then 
either relaminarize or swing up to turbulent region 
depending on the value of the parameter  . The return of 
a state point to the UPO suggests a homoclinic 
connection.

To extract the homoclinic orbit, we select two values 
of   that are near to each other with one relaminarizing 
after the brief return to the UPO (blue orbit in Fig. 
2(a),(b) and the other going turbulent (red orbit in Fig. 
2(a),(b)). Bisection is repeatedly applied in between these 
two values of   until the period of the UPO after the 
return persists for a longer time (black orbit in Fig. 2(b)), 
i.e, the orbit loops back to the UPO for a number of 
times.
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Fig. 2 (a) Orbit of two values of  (red and blue lines) that will be 
used for bisection, (b) homoclinic orbit(black line) as a 
consequence of repeated bisection in between the two 
values of 
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Fig. 4 A pair of homoclinic orbits projected on two-dimensional 
I-D plane for decreasing Reynolds number. The blue orbit 
is the smaller homoclinic orbit by van Veen and Kawahara 
while the red orbit is a newly discovered homoclinic orbit. 
The light green orbit is the UPO

At Re = 400, van Veen and Kawahara[12] had found 
the existence of two distinct homoclinic orbits of the 
Kawahara and Kida gentle UPO using multiple-shooting 
orbit continuation[11]. These two homoclinic orbits are 
obtained again using the method described in the previous 
section, which can be called as single-shooting orbit 
continuation.

Results show that the homoclinic orbits previously 
obtained using multiple-shooting orbit continuation by van 
Veen and Kawahara are quantitatively and qualitatively 
similar to the ones we obtained using single-shooting orbit 
continuation(compare the red orbits in Fig. 3 with the 
orbits in [11]). Further computations reveal that another 
homoclinic orbit of the UPO is present at Re = 400. This 
new homoclinic orbit is shown in Fig. 3.

We proceed to tracking down homoclinic orbits to 
Reynolds numbers below Re = 400. Several homoclinic 
orbits are discovered and we find a pair of homoclinic 
orbits moving closer to each other for decreasing Reynolds 
number (see Fig. 4). One of the homoclinic orbits of the 
pair is the smaller homoclinic orbit by van Veen and 
Kawahara and the other is one of the newly discovered 
homoclinic orbits. The pair move closer until they overlap 

with each other and become one. We call the Reynolds 
number where the pair overlap as tangency Reynolds 
number (ReT). We observe that ReT = 241.3. Below this 
Reynolds number, we do not find homoclinic orbits.

5. Summary

We investigated a time-periodic solution to the 
Navier-Stokes equation and found the existence of 
homoclinic orbits of this edge state. The discovery of 
several homoclinic orbits aside from the previously 
reported ones confirms the existence of infinitely many 
UPOs. As such, turbulence in shear flows can be seen as 
something that is governed by chaotic attractors, which 
reproduces the regeneration cycle[3].

We observed, qualitatively and quantitatively, a pair of 
homoclinic orbits moving closer to each other for 
decreasing Reynolds number. These orbits then collided at 
a tangency Reynolds number ReT = 241.3. The tangency 
Reynolds number suggests the Reynolds number where the 
appearance of homoclinic orbits happens.

The appearance of homoclinic orbits that was presented 
here adds another element in the elucidation of turbulence 
in terms of dynamical systems theory. It is important in 
the future that homoclinic orbits, as well as other 
connecting orbits of invariant sets that might be present, 
be investigated further in relation to turbulence in shear 
flows.
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