• 제목/요약/키워드: high-intensity ultrasound

검색결과 93건 처리시간 0.018초

체외강력집속초음파치료 (Extracorporeal High Intensity Focused Ultrasound Therapy)

  • 한상석
    • 대한골관절종양학회지
    • /
    • 제11권1호
    • /
    • pp.17-24
    • /
    • 2005
  • 의학의 발달과 더불어 종양에 대한 국소치료는 광범위근치술(extended radical surgery) 로부터 기능보존술(function preserving surgery)로 발달하고 이것은 다시 최소침습술(minimal-invasive surgery)로 발전하여 왔다. 그러나 최근 들어서는 기술의 혁신적인 진보로 비침습적수술법(non-invasive surgery)이 개발되어 감마나이프(gamma knife), 사이버나이프(cyber knife), 및 하이푸나이프(HIFU knife) 등이 출현하게 되었다. 본 논문에서는 이들 중 하이푸나이프를 이용한 체외강력집속초음파치료(extracorporeal high intensity focused ultrasound therapy)에 대하여 발달사, 치료기 구조 및 치료과정, 조직학적 변화와 기전, 임상적용, 장단점 및 전망 등을 살펴보고자 한다.

  • PDF

미용 치료 헬스케어를 위한 고강도 집속 초음파 장치 개발 연구 (A Study on the Development of High-intensity focused Ultrasound Device for the Beauty Treatment Health Care)

  • 이우철;고윤석
    • 한국전자통신학회논문지
    • /
    • 제11권12호
    • /
    • pp.1259-1264
    • /
    • 2016
  • 초음파 치료는 회복속도가 빠르고 안전하다는 이유로 피부거상치료와 관련된 미용분야에서 큰 관심을 받고 있다. 본 연구에서는 미용치료를 위한 고강도 집속 초음파 장치의 출력회로를 개발하였다, 고강도 집속 초음파 시스템의 미용치료분야에 대한 적용 가능성을 확인하기 위해 수중 청음기를 이용하여 3 차원 초음파 강도 에너지를 측정 분석하였다, 고강도 집속 초음파장치에 의해 미용 치료에 유용함을 확인하였다.

저강도 초음파 치료기기의 안전성 및 성능평가 가이드라인 수립을 위한 연구 (A Study on the Safety and Performance Test Guideline of Low Intensity Therapeutic Ultrasound Device)

  • 김주영;김재영;노시철;최흥호
    • 대한의용생체공학회:의공학회지
    • /
    • 제36권5호
    • /
    • pp.162-168
    • /
    • 2015
  • In this study, we suggested the performance and safety testing guideline for low intensity pulsed ultrasound (LIPUS) represented by the ultrasound fracture treatment device and cartilage treatment device and low intensity focused ultrasound (LIFU) represented by ultrasonic face lifting device. For these study, the international standards and management regulations of Korea, Japan and United State were analyzed. And the usefulness and applicability were evaluated by testing with commercial equipment and reflecting the views of the industry and experts. As a result of this study, the safety and performance test guidelines for low intensity therapeutic ultrasound device were proposed by presenting the 10 items for LIPUS and 12 items for LIFU. The suggested guidelines are considered a high utilization in the domestic testing and approval authorities. And they are also thought to be useful to new technology development.

CTO 괴사를 위한 고강도 집속 초음파의 음향학적 특성 (Acoustic Characteristics of High Intensity Focused Ultrasound for Necrosis of CTO)

  • 박찬희;정상화
    • 한국생산제조학회지
    • /
    • 제24권5호
    • /
    • pp.481-488
    • /
    • 2015
  • It is difficult to see a therapeutic effect from cardiovascular disease treatment methods in the case of a hardened chronic total occlusion (CTO), owing to the calcification of the deposition materials. However, lesion cells, such as CTOs, can be selectively necrotized without affecting the normal tissue using high-intensity ultrasound focused on one point. In this study, a phantom CTO was necrotized by a high-intensity focused ultrasound (HIFU) energy system, and the acoustic characteristics in the focal region were analyzed. An experimental HIFU device was constructed to discover the appropriate conditions for the necrosis of a phantom CTO. The transfer characteristics of the ultrasound changed in the focal region by the density difference of the phantom CTO. These changes were acoustically analyzed to choose the available frequency band for each density. On-off temperature control in the focal region was applied to prevent rapid temperature rises, which would otherwise affect normal tissue.

초음파 영상을 이용한 고강도 집중 초음파 빔 시각화 (High-intensity focused ultrasound beam path visualization using ultrasound imaging)

  • 송재희;장진호;유양모
    • 한국음향학회지
    • /
    • 제39권1호
    • /
    • pp.16-23
    • /
    • 2020
  • 고강도 집중 초음파(High-Intensity Focused Ultrasound, HIFU) 치료에서 HIFU 초점의 효과적인 위치 파악은 안전한 치료 계획을 개발하는 데 중요하다. 자기 공명 영상 유도 HIFU(Magnetic Resonance Imaging guided HIFU, MRIgHIFU)는 HIFU 초점을 영상화하여 치료 중에 초음파 경로를 시각화 할 수 있지만 초음파 이미징 유도 HIFU(Ultrasound imaging guided HIFU, USIgHIFU)에서는 어려움이 있다. 본 연구에서는 USIgHIFU에 대해 HIFU 초점을 영상화할 수 있는 실시간 초음파 빔 시각화 기법을 제시 하였다. 제안 된 방법에서, 음향 강도(Ispta < 720 mW/㎠) 아래의 이미징 초음파 변환자의 동일한 중심 주파수를 갖는 짧은 펄스가 HIFU 변환기를 통해 전송되고, HIFU 빔 경로를 시각화하기 위해 수신 신호는 동적 수신 포커싱 및 후속 에코 처리를 거쳤다. 소 혈청 알부민 젤 팬텀을 이용한 생체외 실험으로부터, HIFU 빔 경로는 낮은 음향 강도 (Ispta = 94.8 mW/㎠)에서도 명확히 영상화 할 수 있었고 HIFU 초점은 손상이 생성되기 전에 성공적으로 시각화하였다. 이 결과는 제안 된 초음파 빔 경로 시각화 방법이 USIgHIFU 치료에서 원치 않는 조직 손상을 최소화하면서 실시간으로 HIFU 초점을 영상화하는 데 사용될 수 있음을 나타낸다.

Special Issue for Biomedical Ultrasound: Towards Further Advances in Fundamentals and Applications by Comprehensive Reviews

  • Kim, Yong-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • 제29권3E호
    • /
    • pp.107-110
    • /
    • 2010
  • In this paper, the rationale and contents of the special issue of the Journal of the Acoustical Society of Korea regarding comprehensive reviews on past, present and future of biomedical ultrasound are described. Brief descriptions of invited articles are given, and efforts by all contributing authors are gratefully acknowledged.

HIFU: 현황 및 기술적 동향 (High Intensity Focused Ultrasound for Cancer Treatment: Current Agenda and the Latest Technology Trends)

  • 서종범
    • The Journal of the Acoustical Society of Korea
    • /
    • 제29권2E호
    • /
    • pp.55-63
    • /
    • 2010
  • High Intensity Focused Ultrasound (HIFU) is a noninvasive surgical method mainly targeting deeply located cancer tissue. Ultrasound is generated from an extemally located transducer and the beam is focused at the target volume, so that selective damage can be achieved without harm to overlying or surrounding tissues. The mechanism for cell killing can be combination of thermal and cavitational damage. Although cavitation can be an effective means of tissue destruction, the possibility of massive hemorrhage and the unpredictable nature of cavitational events prevent clinical application of cavitation. Hence, thermal damage has been a main focus related to HIFU research. 2D phased array transducer systems allow electronic scanning of focus, multi-foci, and anti-focus with multi-foci, so that HIFU becomes more applicable in clinical use. Currently, lack of noninvasive monitoring means of HIFU is the main factor to limit clinical applications, but development in MRI and Ultrasound Imaging techniques may be able to provide solutions to overcome this problem. With the development of advanced focusing algorithm and monitoring means, complete noninvasive surgery is expected to be implemented in the near future.

Magnetic Resonance-Guided Focused Ultrasound : Current Status and Future Perspectives in Thermal Ablation and Blood-Brain Barrier Opening

  • Lee, Eun Jung;Fomenko, Anton;Lozano, Andres M.
    • Journal of Korean Neurosurgical Society
    • /
    • 제62권1호
    • /
    • pp.10-26
    • /
    • 2019
  • Magnetic resonance-guided focused ultrasound (MRgFUS) is an emerging new technology with considerable potential to treat various neurological diseases. With refinement of ultrasound transducer technology and integration with magnetic resonance imaging guidance, transcranial sonication of precise cerebral targets has become a therapeutic option. Intensity is a key determinant of ultrasound effects. High-intensity focused ultrasound can produce targeted lesions via thermal ablation of tissue. MRgFUS-mediated stereotactic ablation is non-invasive, incision-free, and confers immediate therapeutic effects. Since the US Food and Drug Administration approval of MRgFUS in 2016 for unilateral thalamotomy in medication-refractory essential tremor, studies on novel indications such as Parkinson's disease, psychiatric disease, and brain tumors are underway. MRgFUS is also used in the context of blood-brain barrier (BBB) opening at low intensities, in combination with intravenously-administered microbubbles. Preclinical studies show that MRgFUS-mediated BBB opening safely enhances the delivery of targeted chemotherapeutic agents to the brain and improves tumor control as well as survival. In addition, BBB opening has been shown to activate the innate immune system in animal models of Alzheimer's disease. Amyloid plaque clearance and promotion of neurogenesis in these studies suggest that MRgFUS-mediated BBB opening may be a new paradigm for neurodegenerative disease treatment in the future. Here, we review the current status of preclinical and clinical trials of MRgFUS-mediated thermal ablation and BBB opening, described their mechanisms of action, and discuss future prospects.

Simulation and Measurement of Thermal Ablation in a Tissue-Mimicking Phantom and Ex-Vivo Porcine Liver by Using High Intensity Focused Ultrasound

  • Lee, Kang Il
    • Journal of the Korean Physical Society
    • /
    • 제73권9호
    • /
    • pp.1289-1294
    • /
    • 2018
  • The present study aims to investigate experimentally and theoretically thermal ablation in soft tissues by using high intensity focused ultrasound (HIFU) to assess tissue damage during HIFU thermotherapy. The HIFU field was calculated by solving the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov equation from the frequency-domain perspective. The temperature field was calculated by solving Pennes' bioheat transfer equation, and the thermal dose required to create a thermal lesion was calculated by using the thermal dose formula based on the thermal dose of a 240-min exposure at $43^{\circ}C$. In order to validate the simulation results, we performed thermal ablation experiments in a tissue-mimicking phantom and ex-vivo porcine liver for two different HIFU source conditions by using a 1.1-MHz, single-element, spherically focused HIFU transducer. The small difference between the measured and the predicted lesion sizes suggests that the implementation of the numerical model used here should be modified to iteratively allow for temperature-dependent changes in the physical properties of tissues.

Magnetic Resonance-Guided Focused Ultrasound in Neurosurgery: Taking Lessons from the Past to Inform the Future

  • Jung, Na Young;Chang, Jin Woo
    • Journal of Korean Medical Science
    • /
    • 제33권44호
    • /
    • pp.279.1-279.16
    • /
    • 2018
  • Magnetic resonance-guided focused ultrasound (MRgFUS) is a new emerging neurosurgical procedure applied in a wide range of clinical fields. It can generate high-intensity energy at the focal zone in deep body areas without requiring incision of soft tissues. Although the effectiveness of the focused ultrasound technique had not been recognized because of the skull being a main barrier in the transmission of acoustic energy, the development of hemispheric distribution of ultrasound transducer phased arrays has solved this issue and enabled the performance of true transcranial procedures. Advanced imaging technologies such as magnetic resonance thermometry could enhance the safety of MRgFUS. The current clinical applications of MRgFUS in neurosurgery involve stereotactic ablative treatments for patients with essential tremor, Parkinson's disease, obsessive-compulsive disorder, major depressive disorder, or neuropathic pain. Other potential treatment candidates being examined in ongoing clinical trials include brain tumors, Alzheimer's disease, and epilepsy, based on MRgFUS abilities of thermal ablation and opening the blood-brain barrier. With the development of ultrasound technology to overcome the limitations, MRgFUS is gradually expanding the therapeutic field for intractable neurological disorders and serving as a trail for a promising future in noninvasive and safe neurosurgical care.