Browse > Article
http://dx.doi.org/10.3938/jkps.73.1289

Simulation and Measurement of Thermal Ablation in a Tissue-Mimicking Phantom and Ex-Vivo Porcine Liver by Using High Intensity Focused Ultrasound  

Lee, Kang Il (Department of Physics, Kangwon National University)
Abstract
The present study aims to investigate experimentally and theoretically thermal ablation in soft tissues by using high intensity focused ultrasound (HIFU) to assess tissue damage during HIFU thermotherapy. The HIFU field was calculated by solving the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov equation from the frequency-domain perspective. The temperature field was calculated by solving Pennes' bioheat transfer equation, and the thermal dose required to create a thermal lesion was calculated by using the thermal dose formula based on the thermal dose of a 240-min exposure at $43^{\circ}C$. In order to validate the simulation results, we performed thermal ablation experiments in a tissue-mimicking phantom and ex-vivo porcine liver for two different HIFU source conditions by using a 1.1-MHz, single-element, spherically focused HIFU transducer. The small difference between the measured and the predicted lesion sizes suggests that the implementation of the numerical model used here should be modified to iteratively allow for temperature-dependent changes in the physical properties of tissues.
Keywords
High intensity focused ultrasound; Thermal ablation; Thermal lesion; Tissue-mimicking phantom; Porcine liver;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Howard, J. Yuen, P. Wegner and C. I. Zanelli, in Proceedings of the IEEE Ultrasonics Symposium (Honolulu, 2003).
2 S. R. Guntur and M. J. Choi, Ultrasound Med. Biol. 40, 2680 (2014).   DOI
3 S. Qiao, E. Jackson, C. C. Coussios and R. O. Cleveland, J. Acoust. Soc. Am. 140, 2039 (2016).   DOI
4 K. I. Lee, I. B. Sim, G. S. Kang and M. J. Choi, Mod. Phys. Lett. B 22, 803 (2008).   DOI
5 M. J. Choi, S. R. Guntur, K. I. Lee, D. G. Paeng and A. Coleman, Ultrasound Med. Biol. 39, 439 (2013).   DOI
6 S. R. Guntur, K. I. Lee, D-G. Paeng, A. J. Coleman and M. J. Choi, Ultrasound Med. Biol. 39, 1771 (2013).   DOI
7 R. G. Holt and R. A. Roy, Ultrasound Med. Biol. 27, 1399 (2001).   DOI
8 J. Huang, R. G. Holt, R. O. Cleveland and R. A. Roy, J. Acoust. Soc. Am. 116, 2451 (2004).   DOI
9 M. R. Bailey, V. A. Khokhlova, O. A. Sapozhnikov, S. G. Kargl and L. A. Crum, Acoust. Phys. 49, 369 (2003).   DOI
10 C. W. Huang, M. K. Sun, B. T. Chen, J. Shieh, C. S. Chen and W. S. Chen, Ultrason. Sonochem. 27, 456 (2015).   DOI
11 V. A. Khokhlova, M. R. Bailey, J. A. Reed, B. W. Cunitz, P. J. Kaczkowski and L. A. Crum, J. Acoust. Soc. Am. 119, 1834 (2006).   DOI
12 J. E. Soneson, in Proceedings of the 8th International Symposium on Therapeutic Ultrasound (New York, 2009).
13 M. Pennes, J. Appl. Physiol. 1, 93 (1948).   DOI
14 K. I. Lee and M. J. Choi, Jpn. J. Appl. Phys. 48, 027003 (2009).   DOI
15 S. R. Guntur and M. J. Choi, Ultrasound Med. Biol. 41, 806 (2015).   DOI