DOI QR코드

DOI QR Code

Simulation and Measurement of Thermal Ablation in a Tissue-Mimicking Phantom and Ex-Vivo Porcine Liver by Using High Intensity Focused Ultrasound

  • Lee, Kang Il (Department of Physics, Kangwon National University)
  • Received : 2018.05.08
  • Accepted : 2018.06.12
  • Published : 2018.11.15

Abstract

The present study aims to investigate experimentally and theoretically thermal ablation in soft tissues by using high intensity focused ultrasound (HIFU) to assess tissue damage during HIFU thermotherapy. The HIFU field was calculated by solving the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov equation from the frequency-domain perspective. The temperature field was calculated by solving Pennes' bioheat transfer equation, and the thermal dose required to create a thermal lesion was calculated by using the thermal dose formula based on the thermal dose of a 240-min exposure at $43^{\circ}C$. In order to validate the simulation results, we performed thermal ablation experiments in a tissue-mimicking phantom and ex-vivo porcine liver for two different HIFU source conditions by using a 1.1-MHz, single-element, spherically focused HIFU transducer. The small difference between the measured and the predicted lesion sizes suggests that the implementation of the numerical model used here should be modified to iteratively allow for temperature-dependent changes in the physical properties of tissues.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. M. R. Bailey, V. A. Khokhlova, O. A. Sapozhnikov, S. G. Kargl and L. A. Crum, Acoust. Phys. 49, 369 (2003). https://doi.org/10.1134/1.1591291
  2. C. W. Huang, M. K. Sun, B. T. Chen, J. Shieh, C. S. Chen and W. S. Chen, Ultrason. Sonochem. 27, 456 (2015). https://doi.org/10.1016/j.ultsonch.2015.06.003
  3. J. Huang, R. G. Holt, R. O. Cleveland and R. A. Roy, J. Acoust. Soc. Am. 116, 2451 (2004). https://doi.org/10.1121/1.1787124
  4. V. A. Khokhlova, M. R. Bailey, J. A. Reed, B. W. Cunitz, P. J. Kaczkowski and L. A. Crum, J. Acoust. Soc. Am. 119, 1834 (2006). https://doi.org/10.1121/1.2161440
  5. J. E. Soneson, in Proceedings of the 8th International Symposium on Therapeutic Ultrasound (New York, 2009).
  6. M. Pennes, J. Appl. Physiol. 1, 93 (1948). https://doi.org/10.1152/jappl.1948.1.2.93
  7. K. I. Lee and M. J. Choi, Jpn. J. Appl. Phys. 48, 027003 (2009). https://doi.org/10.1143/JJAP.48.027003
  8. S. Howard, J. Yuen, P. Wegner and C. I. Zanelli, in Proceedings of the IEEE Ultrasonics Symposium (Honolulu, 2003).
  9. S. R. Guntur and M. J. Choi, Ultrasound Med. Biol. 40, 2680 (2014). https://doi.org/10.1016/j.ultrasmedbio.2014.06.010
  10. S. Qiao, E. Jackson, C. C. Coussios and R. O. Cleveland, J. Acoust. Soc. Am. 140, 2039 (2016). https://doi.org/10.1121/1.4962555
  11. K. I. Lee, I. B. Sim, G. S. Kang and M. J. Choi, Mod. Phys. Lett. B 22, 803 (2008). https://doi.org/10.1142/S0217984908015413
  12. M. J. Choi, S. R. Guntur, K. I. Lee, D. G. Paeng and A. Coleman, Ultrasound Med. Biol. 39, 439 (2013). https://doi.org/10.1016/j.ultrasmedbio.2012.10.002
  13. S. R. Guntur and M. J. Choi, Ultrasound Med. Biol. 41, 806 (2015). https://doi.org/10.1016/j.ultrasmedbio.2014.10.008
  14. S. R. Guntur, K. I. Lee, D-G. Paeng, A. J. Coleman and M. J. Choi, Ultrasound Med. Biol. 39, 1771 (2013). https://doi.org/10.1016/j.ultrasmedbio.2013.04.014
  15. R. G. Holt and R. A. Roy, Ultrasound Med. Biol. 27, 1399 (2001). https://doi.org/10.1016/S0301-5629(01)00438-0