DOI QR코드

DOI QR Code

Magnetic Resonance-Guided Focused Ultrasound in Neurosurgery: Taking Lessons from the Past to Inform the Future

  • Jung, Na Young (Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine) ;
  • Chang, Jin Woo (Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine)
  • Received : 2018.07.01
  • Accepted : 2018.09.13
  • Published : 2018.10.29

Abstract

Magnetic resonance-guided focused ultrasound (MRgFUS) is a new emerging neurosurgical procedure applied in a wide range of clinical fields. It can generate high-intensity energy at the focal zone in deep body areas without requiring incision of soft tissues. Although the effectiveness of the focused ultrasound technique had not been recognized because of the skull being a main barrier in the transmission of acoustic energy, the development of hemispheric distribution of ultrasound transducer phased arrays has solved this issue and enabled the performance of true transcranial procedures. Advanced imaging technologies such as magnetic resonance thermometry could enhance the safety of MRgFUS. The current clinical applications of MRgFUS in neurosurgery involve stereotactic ablative treatments for patients with essential tremor, Parkinson's disease, obsessive-compulsive disorder, major depressive disorder, or neuropathic pain. Other potential treatment candidates being examined in ongoing clinical trials include brain tumors, Alzheimer's disease, and epilepsy, based on MRgFUS abilities of thermal ablation and opening the blood-brain barrier. With the development of ultrasound technology to overcome the limitations, MRgFUS is gradually expanding the therapeutic field for intractable neurological disorders and serving as a trail for a promising future in noninvasive and safe neurosurgical care.

Keywords

Acknowledgement

Supported by : Michael J. Fox Foundation

References

  1. Gruetzmacher J. Piezoelektrischer kristall mit ultraschallkonvergenz. Z Phys 1935;96(5-6):342-9. https://doi.org/10.1007/BF01343865
  2. Lynn JG, Putnam TJ. Histology of cerebral lesions produced by focused ultrasound. Am J Pathol 1944;20(3):637-49.
  3. Lynn JG, Zwemer RL, Chick AJ, Miller AE. A new method for the generation and use of focused ultrasound in experimental Biology. J Gen Physiol 1942;26(2):179-93. https://doi.org/10.1085/jgp.26.2.179
  4. Fry WJ, Barnard JW, Fry EJ, Krumins RF, Brennan JF. Ultrasonic lesions in the mammalian central nervous system. Science 1955;122(3168):517-8. https://doi.org/10.1126/science.122.3168.517
  5. Fry WJ, Mosberg WH Jr, Barnard JW, Fry FJ. Production of focal destructive lesions in the central nervous system with ultrasound. J Neurosurg 1954;11(5):471-8. https://doi.org/10.3171/jns.1954.11.5.0471
  6. Jagannathan J, Sanghvi NT, Crum LA, Yen CP, Medel R, Dumont AS, et al. High-intensity focused ultrasound surgery of the brain: part 1--A historical perspective with modern applications. Neurosurgery 2009;64(2):201-10. https://doi.org/10.1227/01.NEU.0000336766.18197.8E
  7. Lindstrom PA. Prefrontal ultrasonic irradiation-a substitute for lobotomy. AMA Arch Neurol Psychiatry 1954;72(4):399-425. https://doi.org/10.1001/archneurpsyc.1954.02330040001001
  8. Guthkelch AN, Carter LP, Cassady JR, Hynynen KH, Iacono RP, Johnson PC, et al. Treatment of malignant brain tumors with focused ultrasound hyperthermia and radiation: results of a phase I trial. J Neurooncol 1991;10(3):271-84.
  9. Hynynen K, Jolesz FA. Demonstration of potential noninvasive ultrasound brain therapy through an intact skull. Ultrasound Med Biol 1998;24(2):275-83. https://doi.org/10.1016/S0301-5629(97)00269-X
  10. Cline HE, Hynynen K, Hardy CJ, Watkins RD, Schenck JF, Jolesz FA. MR temperature mapping of focused ultrasound surgery. Magn Reson Med 1994;31(6):628-36. https://doi.org/10.1002/mrm.1910310608
  11. LeBlang SD, Hoctor K, Steinberg FL. Leiomyoma shrinkage after MRI-guided focused ultrasound treatment: report of 80 patients. AJR Am J Roentgenol 2010;194(1):274-80. https://doi.org/10.2214/AJR.09.2842
  12. Huisman M, van den Bosch MA. MR-guided high-intensity focused ultrasound for noninvasive cancer treatment. Cancer Imaging 2011;11:S161-6. https://doi.org/10.1102/1470-7330.2011.9041
  13. Apfelbeck M, Clevert DA, Ricke J, Stief C, Schlenker B. Contrast enhanced ultrasound (CEUS) with MRI image fusion for monitoring focal therapy of prostate cancer with high intensity focused ultrasound (HIFU)1. Clin Hemorheol Microcirc 2018;69(1-2):93-100. https://doi.org/10.3233/CH-189123
  14. Harary M, Segar DJ, Huang KT, Tafel IJ, Valdes PA, Cosgrove GR. Focused ultrasound in neurosurgery: a historical perspective. Neurosurg Focus 2018;44(2):E2. https://doi.org/10.3171/2017.11.FOCUS17586
  15. Ishimaru A. Wave Propagation and Scattering in Random Media. New York, USA: Wiley; 1999.
  16. Laugier P, Haiat G. Introduction to the physics of ultrasound. In: Laugier P, editor. Bone Quantitative Ultrasound. Rotterdam, NL: Springer Science+Business Media B.V.; 2011, 29-45.
  17. Antich PP, Anderson JA, Ashman RB, Dowdey JE, Gonzales J, Murry RC, et al. Measurement of mechanical properties of bone material in vitro by ultrasound reflection: methodology and comparison with ultrasound transmission. J Bone Miner Res 1991;6(4):417-26. https://doi.org/10.1002/jbmr.5650060414
  18. Christian E, Yu C, Apuzzo ML. Focused ultrasound: relevant history and prospects for the addition of mechanical energy to the neurosurgical armamentarium. World Neurosurg 2014;82(3-4):354-65. https://doi.org/10.1016/j.wneu.2014.06.021
  19. Jolesz FA. MRI-guided focused ultrasound surgery. Annu Rev Med 2009;60(1):417-30. https://doi.org/10.1146/annurev.med.60.041707.170303
  20. McDannold N, Clement GT, Black P, Jolesz F, Hynynen K. Transcranial magnetic resonance imaging- guided focused ultrasound surgery of brain tumors: initial findings in 3 patients. Neurosurgery 2010;66(2):323-32. https://doi.org/10.1227/01.NEU.0000360379.95800.2F
  21. Tempany CM, McDannold NJ, Hynynen K, Jolesz FA. Focused ultrasound surgery in oncology: overview and principles. Radiology 2011;259(1):39-56. https://doi.org/10.1148/radiol.11100155
  22. Hynynen K, Vykhodtseva NI, Chung AH, Sorrentino V, Colucci V, Jolesz FA. Thermal effects of focused ultrasound on the brain: determination with MR imaging. Radiology 1997;204(1):247-53. https://doi.org/10.1148/radiology.204.1.9205255
  23. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 2001;220(3):640-6. https://doi.org/10.1148/radiol.2202001804
  24. Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N. Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage 2005;24(1):12-20. https://doi.org/10.1016/j.neuroimage.2004.06.046
  25. Sheikov N, McDannold N, Vykhodtseva N, Jolesz F, Hynynen K. Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol 2004;30(7):979-89. https://doi.org/10.1016/j.ultrasmedbio.2004.04.010
  26. Louis ED, Ottman R, Hauser WA. How common is the most common adult movement disorder? estimates of the prevalence of essential tremor throughout the world. Mov Disord 1998;13(1):5-10. https://doi.org/10.1002/mds.870130105
  27. Louis ED. Essential tremor and the cerebellum. Handb Clin Neurol 2018;155:245-58.
  28. Muthuraman M, Raethjen J, Koirala N, Anwar AR, Mideksa KG, Elble R, et al. Cerebello-cortical network fingerprints differ between essential, Parkinson's and mimicked tremors. Brain 2018;141(6):1770-81. https://doi.org/10.1093/brain/awy098
  29. Lipsman N, Schwartz ML, Huang Y, Lee L, Sankar T, Chapman M, et al. MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study. Lancet Neurol 2013;12(5):462-8. https://doi.org/10.1016/S1474-4422(13)70048-6
  30. Chang WS, Jung HH, Kweon EJ, Zadicario E, Rachmilevitch I, Chang JW. Unilateral magnetic resonance guided focused ultrasound thalamotomy for essential tremor: practices and clinicoradiological outcomes. J Neurol Neurosurg Psychiatry 2015;86(3):257-64. https://doi.org/10.1136/jnnp-2014-307642
  31. Gallay MN, Moser D, Rossi F, Pourtehrani P, Magara AE, Kowalski M, et al. Incisionless transcranial MR-guided focused ultrasound in essential tremor: cerebellothalamic tractotomy. J Ther Ultrasound 2016;4(1):5. https://doi.org/10.1186/s40349-016-0049-8
  32. Elias WJ, Lipsman N, Ondo WG, Ghanouni P, Kim YG, Lee W, et al. A randomized trial of focused ultrasound thalamotomy for essential tremor. N Engl J Med 2016;375(8):730-9. https://doi.org/10.1056/NEJMoa1600159
  33. Mohammed N, Patra D, Nanda A. A meta-analysis of outcomes and complications of magnetic resonance-guided focused ultrasound in the treatment of essential tremor. Neurosurg Focus 2018;44(2):E4.
  34. Chang JW, Park CK, Lipsman N, Schwartz ML, Ghanouni P, Henderson JM, et al. A prospective trial of magnetic resonance-guided focused ultrasound thalamotomy for essential tremor: results at the 2-year follow-up. Ann Neurol 2018;83(1):107-14. https://doi.org/10.1002/ana.25126
  35. Krishna V, Sammartino F, Agrawal P, Changizi BK, Bourekas E, Knopp MV, et al. Prospective tractography-based targeting for improved safety of focused ultrasound thalamotomy. Neurosurgery 2018.
  36. Tsolaki E, Downes A, Speier W, Elias WJ, Pouratian N. The potential value of probabilistic tractography-based for MR-guided focused ultrasound thalamotomy for essential tremor. Neuroimage Clin 2017;17:1019-27.
  37. DeLong MR, Wichmann T. Basal ganglia circuits as targets for neuromodulation in Parkinson disease. JAMA Neurol 2015;72(11):1354-60. https://doi.org/10.1001/jamaneurol.2015.2397
  38. Katz M, Luciano MS, Carlson K, Luo P, Marks WJ Jr, Larson PS, et al. Differential effects of deep brain stimulation target on motor subtypes in Parkinson's disease. Ann Neurol 2015;77(4):710-9. https://doi.org/10.1002/ana.24374
  39. Metman LV, Slavin KV. Advances in functional neurosurgery for Parkinson's disease. Mov Disord 2015;30(11):1461-70. https://doi.org/10.1002/mds.26338
  40. Magara A, Buhler R, Moser D, Kowalski M, Pourtehrani P, Jeanmonod D. First experience with MR-guided focused ultrasound in the treatment of Parkinson's disease. J Ther Ultrasound 2014;2(1):11. https://doi.org/10.1186/2050-5736-2-11
  41. Bond AE, Shah BB, Huss DS, Dallapiazza RF, Warren A, Harrison MB, et al. Safety and efficacy of focused ultrasound thalamotomy for patients with medication-refractory, tremor-dominant Parkinson disease: a randomized clinical trial. JAMA Neurol 2017;74(12):1412-8. https://doi.org/10.1001/jamaneurol.2017.3098
  42. Martinez-Fernandez R, Rodriguez-Rojas R, Del Alamo M, Hernandez-Fernandez F, Pineda-Pardo JA, Dileone M, et al. Focused ultrasound subthalamotomy in patients with asymmetric Parkinson's disease: a pilot study. Lancet Neurol 2018;17(1):54-63. https://doi.org/10.1016/S1474-4422(17)30403-9
  43. Long L, Cai X, Guo R, Wang P, Wu L, Yin T, et al. Treatment of Parkinson's disease in rats by Nrf2 transfection using MRI-guided focused ultrasound delivery of nanomicrobubbles. Biochem Biophys Res Commun 2017;482(1):75-80. https://doi.org/10.1016/j.bbrc.2016.10.141
  44. Lin CY, Hsieh HY, Chen CM, Wu SR, Tsai CH, Huang CY, et al. Non-invasive, neuron-specific gene therapy by focused ultrasound-induced blood-brain barrier opening in Parkinson's disease mouse model. J Control Release 2016;235:72-81. https://doi.org/10.1016/j.jconrel.2016.05.052
  45. Fan CH, Lin CY, Liu HL, Yeh CK. Ultrasound targeted CNS gene delivery for Parkinson's disease treatment. J Control Release 2017;261:246-62. https://doi.org/10.1016/j.jconrel.2017.07.004
  46. Messina G, Islam L, Cordella R, Gambini O, Franzini A. Deep brain stimulation for aggressive behavior and obsessive-compulsive disorder. J Neurosurg Sci 2016;60(2):211-7.
  47. Luigjes J, de Kwaasteniet BP, de Koning PP, Oudijn MS, van den Munckhof P, Schuurman PR, et al. Surgery for psychiatric disorders. World Neurosurg 2013;80(3-4):31.e17-28.
  48. Cleary DR, Ozpinar A, Raslan AM, Ko AL. Deep brain stimulation for psychiatric disorders: where we are now. Neurosurg Focus 2015;38(6):E2.
  49. Jung HH, Kim SJ, Roh D, Chang JG, Chang WS, Kweon EJ, et al. Bilateral thermal capsulotomy with MR-guided focused ultrasound for patients with treatment-refractory obsessive-compulsive disorder: a proof-of-concept study. Mol Psychiatry 2015;20(10):1205-11. https://doi.org/10.1038/mp.2014.154
  50. Kim SJ, Roh D, Jung HH, Chang WS, Kim CH, Chang JW. A study of novel bilateral thermal capsulotomy with focused ultrasound for treatment-refractory obsessive-compulsive disorder: 2-year follow-up. J Psychiatry Neurosci 2018;43(4):170188.
  51. Kim M, Kim CH, Jung HH, Kim SJ, Chang JW. Treatment of major depressive disorder via magnetic resonance-guided focused ultrasound surgery. Biol Psychiatry 2018;83(1):e17-8.
  52. Tsai SJ. Transcranial focused ultrasound as a possible treatment for major depression. Med Hypotheses 2015;84(4):381-3. https://doi.org/10.1016/j.mehy.2015.01.030
  53. Woolf CJ, Mannion RJ. Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 1999;353(9168):1959-64. https://doi.org/10.1016/S0140-6736(99)01307-0
  54. Jones RC 3rd, Lawson E, Backonja M. Managing neuropathic pain. Med Clin North Am 2016;100(1):151-67. https://doi.org/10.1016/j.mcna.2015.08.009
  55. Jeanmonod D, Magnin M, Morel A. Chronic neurogenic pain and the medial thalamotomy. Schweiz Rundsch Med Prax 1994;83(23):702-7.
  56. Rasche D, Rinaldi PC, Young RF, Tronnier VM. Deep brain stimulation for the treatment of various chronic pain syndromes. Neurosurg Focus 2006;21(6):E8.
  57. Young RF, Jacques DS, Rand RW, Copcutt BR. Medial thalamotomy with the Leksell Gamma Knife for treatment of chronic pain. Acta Neurochir Suppl (Wien) 1994;62:105-10.
  58. Jeanmonod D, Werner B, Morel A, Michels L, Zadicario E, Schiff G, et al. Transcranial magnetic resonance imaging-guided focused ultrasound: noninvasive central lateral thalamotomy for chronic neuropathic pain. Neurosurg Focus 2012;32(1):E1. https://doi.org/10.3171/2011.10.FOCUS11248
  59. Chen X, Diederich CJ, Wootton JH, Pouliot J, Hsu IC. Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia. Int J Hyperthermia 2010;26(1):39-55. https://doi.org/10.3109/02656730903341332
  60. Cohen-Inbar O, Melmer P, Lee CC, Xu Z, Schlesinger D, Sheehan JP. Leukoencephalopathy in long term brain metastases survivors treated with radiosurgery. J Neurooncol 2016;126(2):289-98. https://doi.org/10.1007/s11060-015-1962-3
  61. Medvid R, Ruiz A, Komotar RJ, Jagid JR, Ivan ME, Quencer RM, et al. Current applications of MRI-guided laser interstitial thermal therapy in the treatment of brain neoplasms and epilepsy: a radiologic and neurosurgical overview. AJNR Am J Neuroradiol 2015;36(11):1998-2006. https://doi.org/10.3174/ajnr.A4362
  62. Missios S, Bekelis K, Barnett GH. Renaissance of laser interstitial thermal ablation. Neurosurg Focus 2015;38(3):E13.
  63. Coluccia D, Fandino J, Schwyzer L, O'Gorman R, Remonda L, Anon J, et al. First noninvasive thermal ablation of a brain tumor with MR-guided focused ultrasound. J Ther Ultrasound 2014;2(1):17. https://doi.org/10.1186/2050-5736-2-17
  64. Gabathuler R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis 2010;37(1):48-57. https://doi.org/10.1016/j.nbd.2009.07.028
  65. Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 2012;64(7):614-28. https://doi.org/10.1016/j.addr.2011.11.002
  66. Bregy A, Shah AH, Diaz MV, Pierce HE, Ames PL, Diaz D, et al. The role of Gliadel wafers in the treatment of high-grade gliomas. Expert Rev Anticancer Ther 2013;13(12):1453-61. https://doi.org/10.1586/14737140.2013.840090
  67. Kovacs ZI, Kim S, Jikaria N, Qureshi F, Milo B, Lewis BK, et al. Disrupting the blood-brain barrier by focused ultrasound induces sterile inflammation. Proc Natl Acad Sci U S A 2017;114(1):E75-84. https://doi.org/10.1073/pnas.1614777114
  68. McDannold N, Arvanitis CD, Vykhodtseva N, Livingstone MS. Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques. Cancer Res 2012;72(14):3652-63. https://doi.org/10.1158/0008-5472.CAN-12-0128
  69. Okada K, Kudo N, Niwa K, Yamamoto K. A basic study on sonoporation with microbubbles exposed to pulsed ultrasound. J Med Ultrason (2001) 2005;32(1):3-11. https://doi.org/10.1007/s10396-005-0031-5
  70. Burgess A, Hynynen K. Drug delivery across the blood-brain barrier using focused ultrasound. Expert Opin Drug Deliv 2014;11(5):711-21. https://doi.org/10.1517/17425247.2014.897693
  71. Thevenot E, Jordao JF, O'Reilly MA, Markham K, Weng YQ, Foust KD, et al. Targeted delivery of self-complementary adeno-associated virus serotype 9 to the brain, using magnetic resonance imaging-guided focused ultrasound. Hum Gene Ther 2012;23(11):1144-55. https://doi.org/10.1089/hum.2012.013
  72. Mei J, Cheng Y, Song Y, Yang Y, Wang F, Liu Y, et al. Experimental study on targeted methotrexate delivery to the rabbit brain via magnetic resonance imaging-guided focused ultrasound. J Ultrasound Med 2009;28(7):871-80. https://doi.org/10.7863/jum.2009.28.7.871
  73. Park J, Aryal M, Vykhodtseva N, Zhang YZ, McDannold N. Evaluation of permeability, doxorubicin delivery, and drug retention in a rat brain tumor model after ultrasound-induced blood-tumor barrier disruption. J Control Release 2017;250:77-85. https://doi.org/10.1016/j.jconrel.2016.10.011
  74. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Executive summary: heart disease and stroke statistics--2016 update: a report from the American Heart Association. Circulation 2016;133(4):447-54. https://doi.org/10.1161/CIR.0000000000000366
  75. Heron M. Deaths: leading causes for 2015. Natl Vital Stat Rep 2017;66(5):1-76.
  76. Jayaraman MV, Hussain MS, Abruzzo T, Albani B, Albuquerque FC, Alexander MJ, et al. Embolectomy for stroke with emergent large vessel occlusion (ELVO): report of the Standards and Guidelines Committee of the Society of NeuroInterventional Surgery. J Neurointerv Surg 2015;7(5):316-21. https://doi.org/10.1136/neurintsurg-2015-011717
  77. Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC, et al. 2015 American Heart Association/American Stroke Association Focused Update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals From the American Heart Association/American Stroke Association. Stroke 2015;46(10):3020-35. https://doi.org/10.1161/STR.0000000000000074
  78. Tsivgoulis G, Safouris A, Katsanos AH, Arthur AS, Alexandrov AV. Mechanical thrombectomy for emergent large vessel occlusion: a critical appraisal of recent randomized controlled clinical trials. Brain Behav 2016;6(2):e00418.
  79. Ding D, Przybylowski CJ, Starke RM, Sterling Street R, Tyree AE, Webster Crowley R, et al. A minimally invasive anterior skull base approach for evacuation of a basal ganglia hemorrhage. J Clin Neurosci 2015;22(11):1816-9. https://doi.org/10.1016/j.jocn.2015.03.052
  80. Hemphill JC 3rd, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2015;46(7):2032-60. https://doi.org/10.1161/STR.0000000000000069
  81. Phenix CP, Togtema M, Pichardo S, Zehbe I, Curiel L. High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery. J Pharm Pharm Sci 2014;17(1):136-53. https://doi.org/10.18433/J3ZP5F
  82. Bader KB, Bouchoux G, Holland CK. Sonothrombolysis. Adv Exp Med Biol 2016;880:339-62.
  83. Chen X, Leeman JE, Wang J, Pacella JJ, Villanueva FS. New insights into mechanisms of sonothrombolysis using ultra-high-speed imaging. Ultrasound Med Biol 2014;40(1):258-62. https://doi.org/10.1016/j.ultrasmedbio.2013.08.021
  84. Pajek D, Burgess A, Huang Y, Hynynen K. High-intensity focused ultrasound sonothrombolysis: the use of perfluorocarbon droplets to achieve clot lysis at reduced acoustic power. Ultrasound Med Biol 2014;40(9):2151-61. https://doi.org/10.1016/j.ultrasmedbio.2014.03.026
  85. Wright C, Hynynen K, Goertz D. In vitro and in vivo high-intensity focused ultrasound thrombolysis. Invest Radiol 2012;47(4):217-25. https://doi.org/10.1097/RLI.0b013e31823cc75c
  86. Westermark S, Wiksell H, Elmqvist H, Hultenby K, Berglund H. Effect of externally applied focused acoustic energy on clot disruption in vitro. Clin Sci (Lond) 1999;97(1):67-71. https://doi.org/10.1042/cs0970067
  87. Rosenschein U, Furman V, Kerner E, Fabian I, Bernheim J, Eshel Y. Ultrasound imaging-guided noninvasive ultrasound thrombolysis: preclinical results. Circulation 2000;102(2):238-45. https://doi.org/10.1161/01.CIR.102.2.238
  88. Maxwell AD, Cain CA, Duryea AP, Yuan L, Gurm HS, Xu Z. Noninvasive thrombolysis using pulsed ultrasound cavitation therapy - histotripsy. Ultrasound Med Biol 2009;35(12):1982-94. https://doi.org/10.1016/j.ultrasmedbio.2009.07.001
  89. Harnof S, Zibly Z, Hananel A, Monteith S, Grinfeld J, Schiff G, et al. Potential of magnetic resonance-guided focused ultrasound for intracranial hemorrhage: an in vivo feasibility study. J Stroke Cerebrovasc Dis 2014;23(6):1585-91. https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.12.044
  90. Monteith SJ, Harnof S, Medel R, Popp B, Wintermark M, Lopes MB, et al. Minimally invasive treatment of intracerebral hemorrhage with magnetic resonance-guided focused ultrasound. J Neurosurg 2013;118(5):1035-45. https://doi.org/10.3171/2012.12.JNS121095
  91. Regis J, Rey M, Bartolomei F, Vladyka V, Liscak R, Schrottner O, et al. Gamma knife surgery in mesial temporal lobe epilepsy: a prospective multicenter study. Epilepsia 2004;45(5):504-15. https://doi.org/10.1111/j.0013-9580.2004.07903.x
  92. Vojtech Z, Vladyka V, Kalina M, Nespor E, Seltenreichova K, Semnicka J, et al. The use of radiosurgery for the treatment of mesial temporal lobe epilepsy and long-term results. Epilepsia 2009;50(9):2061-71. https://doi.org/10.1111/j.1528-1167.2009.02071.x
  93. Malikova H, Vojtech Z, Liscak R, Prochazka T, Vymazal J, Mareckova I, et al. Microsurgical and stereotactic radiofrequency amygdalohippocampectomy for the treatment of mesial temporal lobe epilepsy: different volume reduction, similar clinical seizure control. Stereotact Funct Neurosurg 2010;88(1):42-50. https://doi.org/10.1159/000268741
  94. Hoppe C, Witt JA, Helmstaedter C, Gasser T, Vatter H, Elger CE. Laser interstitial thermotherapy (LiTT) in epilepsy surgery. Seizure 2017;48:45-52. https://doi.org/10.1016/j.seizure.2017.04.002
  95. Mueller JK, Ai L, Bansal P, Legon W. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound. J Neural Eng 2017;14(6):066012. https://doi.org/10.1088/1741-2552/aa843e
  96. Chang WS, Jung HH, Zadicario E, Rachmilevitch I, Tlusty T, Vitek S, et al. Factors associated with successful magnetic resonance-guided focused ultrasound treatment: efficiency of acoustic energy delivery through the skull. J Neurosurg 2016;124(2):411-6. https://doi.org/10.3171/2015.3.JNS142592
  97. MacDonell J, Patel N, Rubino S, Ghoshal G, Fischer G, Burdette EC, et al. Magnetic resonance-guided interstitial high-intensity focused ultrasound for brain tumor ablation. Neurosurg Focus 2018;44(2):E11. https://doi.org/10.3171/2017.11.FOCUS17613
  98. Monteith S, Snell J, Eames M, Kassell NF, Kelly E, Gwinn R. Transcranial magnetic resonance-guided focused ultrasound for temporal lobe epilepsy: a laboratory feasibility study. J Neurosurg 2016;125(6):1557-64. https://doi.org/10.3171/2015.10.JNS1542
  99. Hersh DS, Eisenberg HM. Current and future uses of transcranial focused ultrasound in neurosurgery. J Neurosurg Sci 2018;62(2):203-13.
  100. Ghanouni P, Pauly KB, Elias WJ, Henderson J, Sheehan J, Monteith S, et al. Transcranial MRI-guided focused ultrasound: a review of the technologic and neurologic applications. AJR Am J Roentgenol 2015;205(1):150-9. https://doi.org/10.2214/AJR.14.13632
  101. Pajek D, Hynynen K. The design of a focused ultrasound transducer array for the treatment of stroke: a simulation study. Phys Med Biol 2012;57(15):4951-68. https://doi.org/10.1088/0031-9155/57/15/4951
  102. Tsivgoulis G, Eggers J, Ribo M, Perren F, Saqqur M, Rubiera M, et al. Safety and efficacy of ultrasound-enhanced thrombolysis: a comprehensive review and meta-analysis of randomized and nonrandomized studies. Stroke 2010;41(2):280-7. https://doi.org/10.1161/STROKEAHA.109.563304

Cited by

  1. Screening for Platelet Dysfunction and Use of Prophylactic Tranexamic Acid in Patients Undergoing Deep Brain Stimulation: A Retrospective Analysis of Incidence and Outcome of Intracranial Hemorrhage vol.98, pp.3, 2018, https://doi.org/10.1159/000505714
  2. Device profile of exAblate Neuro 4000, the leading system for brain magnetic resonance guided focused ultrasound technology: an overview of its safety and efficacy in the treatment of medically refrac vol.18, pp.5, 2021, https://doi.org/10.1080/17434440.2021.1921572