• Title/Summary/Keyword: high voltage generator

Search Result 573, Processing Time 0.038 seconds

A Study On Low Radiation Measurement of Radiation Measuring Devices and Improvement of Reaction Speed according to the Rapid Change of Radiation Dose (방사선 측정장치의 저준위 방사선 측정과 방사선량의 급격한 변화에 따른 장치의 반응 속도개선에 관한 연구)

  • Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.544-551
    • /
    • 2014
  • This paper suggests an algorithm to measure low-level radiation by radiation measuring devices, and the other algorithm to improve reaction speed of the device to better respond to dramatic changes in radiation amount. The former algorithm to improve the accuracy of measuring low-level radiation takes advantage of a dual window radiation measurement method which is based on accumulated average of pulses gathered by a radiation measuring sensor. The latter algorithm is to enhance reaction speed of a measuring device to more sensitively react to dramatic changes in radiation amount by adopting a dual window radiation measurement method which analyzes data patterns newly put into for six seconds. To verify the suggested algorithms, a hardware-which consists of sensor and high-voltage generator, controller, charger and power supply circuit, wireless communication part, and display part-was used. Tests conducted on the dual window radiation measurement method as used in the suggested algorithm have proved that accuracy improves to measure low-level radiation of 5uSv/h, and linearity also gets better. Other tests were conducted to see whether the suggested algorithm enhances the reaction speed of a radiation measuring device so that the device responds better to dramatically changing radiation amount. The experimental results have shown meaningful changes in numbers after six seconds. Therefore, the conclusions are made that the algorithm enhances the reaction speed of the device.

A Study on the Electrical Characteristics of Ge2Sb2Te5/Ti/W-Ge8Sb2Te11 Structure for Multi-Level Phase Change Memory (다중준위 상변환 메모리를 위한 Ge2Sb2Te5/Ti/W-Ge8Sb2Te11 구조의 전기적 특성 연구)

  • Oh, Woo-Young;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.44-49
    • /
    • 2022
  • In this paper, we investigated current (I)- and voltage (V)-sweeping properties in a double-stack structure, Ge2Sb2Te5/Ti/W-doped Ge8Sb2Te11, a candidate medium for applications to multilevel phase-change memory. 200-nm-thick and W-doped Ge2Sb2Te5 and W-doped Ge8Sb2Te11 films were deposited on p-type Si(100) substrate using magnetron sputtering system, and the sheet resistance was measured using 4 point-probe method. The sheet resistance of amorphous-phase W-doped Ge8Sb2Te11 film was about 1 order larger than that of Ge2Sb2Te5 film. The I- and V-sweeping properties were measured using sourcemeter, pulse generator, and digital multimeter. The speed of amorphous-to-multilevel crystallization was evaluated from a graph of resistance vs. pulse duration (t) at a fixed applied voltage (12 V). All the double-stack cells exhibited a two-step phase change process with the multilevel memory states of high-middle-low resistance (HR-MR-LR). In particular, the stable MR state is required to guarantee the reliability of the multilevel phase-change memory. For the Ge2Sb2Te5 (150 nm)/Ti (20 nm)/W-Ge8Sb2Te11 (50 nm), the phase transformations of HR→MR and MR→LR were observed at t<30ns and t<65ns, respectively. We believe that a high speed and stable multilevel phase-change memory can be optimized by the double-stack structure of proper Ge-Sb-Te films separated by a barrier metal (Ti).

Frequency Stability Enhancement of Power System using BESS (BESS를 활용한 전력계통 주파수 안정도 향상)

  • Yoo, Seong-Soo;Kwak, Eun-Sup;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.595-606
    • /
    • 2022
  • Korea has the characteristics of traditional power system such as large-scale power generation and large-scale power transmission systems, including 20 GW large-scale power generation complexes in several regions with unit generator capacity exceeding 1.4 GW, 2-3 ultra-high-voltage transmission lines that transport power from large-scale power generation complexes, and 6 ultra-high-voltage transmission lines that transport power from non-metropolitan areas to the metropolitan area. Due to the characteristics of the power system, the penetration level for renewable energy is low, but due to frequency stability issue, some generators are reducing the output of generators. In the future, the issue of maintaining the stability of the power system is expected to emerge as the most important issue in accordance with the policy of expanding renewable energy. When non-inertial inverter-based renewable energy, such as solar and wind power, surges rapidly, the means to improve the power system stability in an independent system is to install a natural inertial resource synchronous condenser (SC) and a virtual inertial resource BESS in the system. In this study, we analyzed the effect of renewable energy on power system stability and the BESS effect to maintain the minimum frequency through a power system simulation. It was confirmed that the BESS effect according to the power generation constraint capacity reached a maximum of 122.81 %.

A 40 MHz to 280 MHz 32-phase CMOS 0.11-${\mu}m$ Delay-Locked Loop (40MHz ~ 280MHz의 동작 주파수와 32개의 위상을 가지는 CMOS 0.11-${\mu}m$ 지연 고정 루프)

  • Lee, Kwang-Hun;Jang, Young-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.95-98
    • /
    • 2012
  • This paper describes a multiphase delay-locked loop (DLL) that generates a 32-phase output clock over the operating frequency range of 40 MHz to 280 MHz. The matrix-based delay line is used for high resolution of 1-bit delay. A calibration scheme, which improves the linearity of a delay line, is achieved by calibrating the nonlinearity of the input stage of the matrix. The multi-phase DLL is fabricated by using 0.11-${\mu}m$ CMOS process with a 1.2 V supply. At the operating frequency of 125MHz, the measurement results shows that the DNL is less than +0.51/-0.12 LSB, and the measured peak-to-peak jitter of the multi-phase DLL is 30 ps with input peak-to-peak jitter of 12.9 ps. The area and power consumption of the implemented DLL are $480{\times}550{\mu}m^2$ and 9.6 mW at the supply voltage of 1.2 V, respectively.

  • PDF

MOCVD를 이용한 $BiSbTe_3$ 박막성장 및 열전소자 제작

  • Kwon, Sung-Do;Yoon, Seok-Jin;Ju, Byeong-Kwon;Kim, Jin-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.425-425
    • /
    • 2008
  • Bismuth-antimony-telluride based thermoelectric thin film materials were prepared by metal organic vapor phase deposition using trimethylbismuth, triethylantimony and diisopropyltelluride as metal organic sources. A planar type thermoelectric device has been fabricated using p-type $Bi_{0.4}Sb_{1.6}Te_3$ and n-type $Bi_2Te_3$ thin films. Firstly, the p-type thermoelectric element was patterned after growth of $4{\mu}m$ thickness of $Bi_{0.4}Sb_{1.6}Te_3$ layer. Again n-type $Bi_2Te_3$ film was grown onto the patterned p-type thermoelectric film and n-type strips are formed by using selective chemical etchant for $Bi_2Te_3$. The top electrical connector was formed by thermally deposited metal film. The generator consists of 20 pairs of p- and n-type legs. We demonstrate complex structures of different conduction types of thermoelectric element on same substrate by two separate runs of MOCVD with etch-stop layer and selective etchant for n-type thermoelectric material. Device performance was evaluated on a number of thermoelectric devices. To demonstrate power generation, one side of the device was heated by heating block and the voltage output was measured. The highest estimated power of 1.3mW is obtained at the temperature difference of 45K. We provide a promising approach for fabricating thin film thermoelectric generators by using MOCVD grown thermoelectric materials which can employ nanostructures for high thermoelectric properties.

  • PDF

A Design of Ultra-sonic Range Meter Front-end IC (초음파 거리 측정회로용 프론트-엔드 IC의 설계)

  • Lee, Jun-Sung
    • 전자공학회논문지 IE
    • /
    • v.47 no.4
    • /
    • pp.1-9
    • /
    • 2010
  • This paper describes a ultrasonic signal processing front-end IC for distance range meter and body detector. The burst shaped ultrasonic signal is generated by a self oscillator and its frequency range is about 40[kHz]-300[kHz]. The generated ultrasonic signal transmit through piezo resonator. The another piezo device transduce from received ultrasonic signal to electrical signals. This front-end IC contained low noise amplifier, band pass filter, busrt detector and time pulse generator and so on. This IC has two type of new idea for improve function and performance, which are self frequency control (SFC) and Variable Gain Control amplifier (VGC) scheme. The dimensions and number of external parts are minimized in order to get a smaller hardware size. This device has been fabricated in a O.6[um] double poly, double metal 40[V] High Voltage CMOS process.

Performance analysis of legacy line communication using high current powerlines in midrange wind turbines (중형급 풍력 발전기내 전력선을 이용한 무배선 통신 성능분석)

  • Kim, Kyoung-Hwa;Jeong, Seong-Uk;Nam, Seung-Yun;Kim, Hyun-Sik;Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.336-341
    • /
    • 2016
  • This paper presents an implementation of a communication network in wind turbines, which exploits the power-line communication system (PLC). We used an inductive coupling unit and a multi-interface device to connect a data-communication terminal to the power line, to ensure that stable communication was possible at various electric current and voltage values of the generator. The results of the operation tests conducted on an operational wind turbine showed that the implemented PLC demonstrated a transmission rate of at least 43 Mbps with a 100% success rate. Moreover, a real-time image was transmitted. Thus, the system could be a useful alternative for implementing a communication network in wind turbines that does not require additional channels. Since the presented system is easy to implement, and can support various interfaces for data communication, it will be quite useful when a real-time monitoring system is launched in wind turbines.

The Design and Experiment of Piezoelectric Energy-Harvesting Device Imitating Seaweed (해조류를 모방한 압전 에너지 수확 장치의 설계와 실험)

  • Kang, Tae-Hun;Na, Yeong-Min;Lee, Hyun-Seok;Park, Jong-Kyu;Park, Tae-Gone
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.73-84
    • /
    • 2015
  • Electricity generation using fossil fuels has caused environmental pollution. To solve this problem, research on new renewable energy sources (solar, wind power, geothermal heat, etc.) to replace fossil fuels is ongoing. These devices are able to generate power consistently. However, they have many weaknesses, such as high installation costs and limits to possible setup environments. Therefore, an active study on piezoelectric harvesting technology that is able to surmount the limitations of existing energy technologies is underway. Piezoelectric harvesting technology uses the piezoelectric effect, which occurs in crystals that generate voltage when stress is applied. Therefore, it has advantages, such as a wider installation base and lower technological costs. In this study, a piezoelectric harvesting device imitating seaweed, which has a consistent motion caused by fluid, is used. Thus, it can regenerate electricity at sea or on a bridge pillar, which has a constant turbulent flow. The components of the device include circuitry, springs, an electric generator, and balancing and buoyancy elements. Additionally, multiphysics analysis coupled with fluid, structure, and piezoelectric elements is conducted using COMSOL Multiphysics to evaluate performance. Through this program, displacement and electric power were analyzed, and the actual performance was confirmed by the experiment.

Development of a Precision BLDC Servo Position Controller for Composite Smoke Bomb Azimuth Driving System (복합연막탄 선회구동장치를 위한 정밀 BLDC 서보 위치 제어기 개발)

  • Koo, Bon-Min;Choi, Sung-Jin;Choi, Jung-Keyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.467-472
    • /
    • 2006
  • This study has been done to design a precise system and develop position control algorithm to control a Composite Smoke Bomb Azimuth driving apparatus of a BLDC servo motor. Having to Blind the sight of opposite tank. the Smoke Bomb Rotational driving system needs instant response that is able to detect opponent appearance and blast the bomb at a short time. So a design that shows fast current response capability or $300[Hz]\sim500[Hz]$ is proposed. in the MIN-MAX PWM technology is used to increase the operational speed. in order to control the blasting position, a precision position control algorithm that utilizes the integral value of speed trajectory is suggested. Also these characteristics are monitored and assessed by the PC based monitoring program which shows the graphs of current, voltage, position, and speed parameters. The main controller is based on a TMS320VC33 high performance floating-point DSP(Digital Signal Process) and the PWM generator utilizes EPM7128 CPLD.

Testing of Common Electromagnetic Environments for Risk of Interference with Cardiac Pacemaker Function

  • Tiikkaja, Maria;Aro, Aapo L.;Alanko, Tommi;Lindholm, Harri;Sistonen, Heli;Hartikainen, Juha E.K.;Toivonen, Lauri;Juutilainen, Jukka;Hietanen, Maila
    • Safety and Health at Work
    • /
    • v.4 no.3
    • /
    • pp.156-159
    • /
    • 2013
  • Background: Cardiac pacemakers are known to be susceptible to strong electromagnetic fields (EMFs). This in vivo study investigated occurrence of electromagnetic interference with pacemakers caused by common environmental sources of EMFs. Methods: Eleven volunteers with a pacemaker were exposed to EMFs produced by two mobile phone base stations, an electrically powered commuter train, and an overhead high voltage transmission lines. All the pacemakers were programmed in normal clinically selected settings with bipolar sensing and pacing configurations. Results: None of the pacemakers experienced interference in any of these exposure situations. However, often it is not clear whether or not strong EMFs exist in various work environments, and hence an individual risk assessment is needed. Conclusions: Modern pacemakers are well shielded against external EMFs, and workers with a pacemaker can most often return to their previous work after having a pacemaker implanted. However, an appropriate risk assessment is still necessary after the implantation of a pacemaker, a change of its generator, or major modification of its programming settings.