• Title/Summary/Keyword: high current density

Search Result 2,277, Processing Time 0.031 seconds

Development of a Non-contact Electric Power Transferring System by Using an Inductive Coupling Method (자기 유도방식을 이용한 550 VA 급 비접촉 전력전송기기의 개발)

  • Kim, Jin-Sung;Lee, Yu-Ki;Kim, Se-Ryong;Lee, Jae-Gil;Park, Gwan-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.3
    • /
    • pp.97-102
    • /
    • 2012
  • In this paper, a non-contact power transferring has been performed. Power Transferring by using an electromagnetic inductive coupling is more suitable for high power transmission than by using a magnetic resonance method. Power transferring system has been designed with Loading Distribution Method to divide the electric and magnetic loading for designing the magnetic core and electric coil. To design optimum shapes of magnetic yoke, 3D finite element analysis has been performed. Experimental results show good agreement with numerical ones. So, it could be adopted in the electric power transferring system for a short-distance wireless electric power transferring machine.

Resistive Switching Effect of the $In_2O_3$ Nanoparticles on Monolayered Graphene for Flexible Hybrid Memory Device

  • Lee, Dong Uk;Kim, Dongwook;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.396-396
    • /
    • 2013
  • The resistive random access memory (ReRAM) has several advantages to apply next generation non-volatile memory device, because of fast switching time, long retentions, and large memory windows. The high mobility of monolayered graphene showed several possibilities for scale down and electrical property enhancement of memory device. In this study, the monolayered graphene grown by chemical vapor deposition was transferred to $SiO_2$ (100 nm)/Si substrate and glass by using PMMA coating method. For formation of metal-oxide nanoparticles, we used a chemical reaction between metal films and polyamic acid layer. The 50-nm thick BPDA-PDA polyamic acid layer was coated on the graphene layer. Through soft baking at $125^{\circ}C$ or 30 min, solvent in polyimide layer was removed. Then, 5-nm-thick indium layer was deposited by using thermal evaporator at room temperature. And then, the second polyimide layer was coated on the indium thin film. After remove solvent and open bottom graphene layer, the samples were annealed at $400^{\circ}C$ or 1 hr by using furnace in $N_2$ ambient. The average diameter and density of nanoparticle were depending on annealing temperature and times. During annealing process, the metal and oxygen ions combined to create $In_2O_3$ nanoparticle in the polyimide layer. The electrical properties of $In_2O_3$ nanoparticle ReRAM such as current-voltage curve, operation speed and retention discussed for applictions of transparent and flexible hybrid ReRAM device.

  • PDF

Performance Evaluation and Analysis of NVM Storage for Ultra-Light Internet of Things (초경량 사물인터넷을 위한 비휘발성램 스토리지 성능평가 및 분석)

  • Lee, Eunji;Yoo, Seunghoon;Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.181-186
    • /
    • 2015
  • With the rapid growth of semiconductor technologies, small-sized devices with powerful computing abilities are becoming a reality. As this environment has a limit on power supply, NVM storage that has a high density and low power consumption is preferred to HDD or SSD. However, legacy software layers optimized for HDDs should be revisited. Specifically, as storage performance approaches DRAM performance, existing I/O mechanisms and software configurations should be reassessed. This paper explores the challenges and implications of using NVM storage with a broad range of experiments. We measure the performance of a system with NVM storage emulated by DRAM with proper timing parameters and compare it with that of HDD storage environments under various configurations. Our experimental results show that even with storage as fast as DRAM, the performance gain is not large for read operations as current I/O mechanisms do a good job hiding the slow performance of HDD. To assess the potential benefit of fast storage media, we change various I/O configurations and perform experiments to quantify the effects of existing I/O mechanisms such as buffer caching, read-ahead, synchronous I/O, direct I/O, block I/O, and byte-addressable I/O on systems with NVM storage.

Charge-discharge behaviour of lithium ion secondary battery using graphitized mesophase pitch-based carbon fiber anodes (흑연화 MPCF 부극을 이용한 Li ion 2차전지의 충방전 특성)

  • Kim Sang-Pil;Park Jeong-Hu;Cho Jeong-Soo;Yun Mun-Soo;Kim Kyu-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.14-17
    • /
    • 1998
  • Mesophase pitch-based carbon fibers(MPCF) have been investigated as an anode active material for lithium ion secondary battery. Graphitized MPCF gives high discharge capacity and good Ah efficiency. MPCF/Li cell shows an initial discharge capacity of 300 mAh/g and Ah efficiency above $90\%$ at a current density of 25 mA/g at $0\~1$ V. Cylindrical lithium ion secondary battery was fabricated using mixed carbon anode and $LiCoO_2$, cathode. In order to improve the cyclability of lithiun ion secondary battery, other carbons were added to the MPCF up to $10wt\%$. The cycle performance of lithium ion secondary battery using mixed carbons was superior to those using graphitized MPCF.

Operation of A Small MCFC Stack Using New Designed Circular Separator (새로운 원반형 구조의 분리판을 사용한 소형 용융탄산염 스택의 운전)

  • Han, Jonghee;Roh, Gil-Tae;Yoon, Sung Pill;Nam, Suk Woo;LIm, Tae Hoon;Hong, Seong Ahn
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.3
    • /
    • pp.229-235
    • /
    • 2003
  • A 50W class MCFC stack was operated in order to test a new design of the circular shaped separator. in the new design, the anode gas was supplied into the stack and was exhausted out of the stack after the anode reaction. The exhausted gas was reacted with the cathode gas supplied with excess oxygen in the vessel in which the stack was placed. Then the reacted gas flowed into the cathode side of the stack and was exhausted through the outlet located in the center of the stack. The average voltage of the single cells in the stack was 0.835V under the current density of $150mA/cm^2$, initially, and the degradation rate of the stack voltage was 1.7%/1,000h. High stack voltage with good stability of the present stack was due to the small temperature gradient in the stack. The small temperature gradient as well as the easiness of temperature control was the result of the new configuration of the separator which utilized the heat of the combustion reaction between anode outlet gas and the cathode inlet gas for heating the stack.

The Characteristics of Silicon Nitride Films Grown at Low Temperature for Flexible Display (플렉서블 디스플레이의 적용을 위한 저온 실리콘 질화물 박막성장의 특성 연구)

  • Lim, Nomin;Kim, Moonkeun;Kwon, Kwang-Ho;Kim, Jong-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.816-820
    • /
    • 2013
  • We investigated the characteristics of the silicon oxy-nitride and nitride films grown by plasma-enhanced chemical vapor deposition (PECVD) at the low temperature with a varying $NH_3/N_2O$ mixing ratio and a fixed $SiH_4$ flow rate. The deposition temperature was held at $150^{\circ}C$ which was the temperature compatible with the plastic substrate. The composition and bonding structure of the nitride films were investigated using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Nitrogen richness was confirmed with increasing optical band gap and increasing dielectric constant with the higher $NH_3$ fraction. The leakage current density of the nitride films with a high NH3 fraction decreased from $8{\times}10^{-9}$ to $9{\times}10^{-11}(A/cm^2$ at 1.5 MV/cm). This results showed that the films had improved electrical properties and could be acceptable as a gate insulator for thin film transistors by deposited with variable $NH_3/N_2O$ mixing ratio.

Characterization of Commercial Membranes for Non-aqueous Vanadium Redox Flow Battery (비수계 바나듐 레독스 흐름 전지를 위한 상용 멤브레인의 특성분석)

  • Sung, Ki-Won;Shin, Sung-Hee;Moon, Seung-Hyeon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.615-621
    • /
    • 2013
  • Membrane characterization methods for aqueous redox flow batteries aqueous RFBs were modified for non-aqueous RFBs. The modified characterization methods, such as ion exchange capacity, transport number, permeability and single cell test, were carried out to evaluate commercial membranes in non-aqueous electrolyte. It was found that columbic efficiency and energy efficiency in a single cell test were dependent on the ion selectivity of commercial anion exchange membranes. Neosepta AHA anion exchange membrane showed the anion transport number of 0.81, which is a relatively low ion selectivity in non-aqueous electrolyte, however, exhibited 92% of coulombic efficiency and 86% of energy efficiency in a single cell test. It was also found that a porous membrane without ion selectivity is suitable for a non-aqueous redox flow battery at a high current density.

Depolymerization of Fucoidan by Contact Glow Discharge Electrolysis(CGDE) (접촉 글로우 방전 전기분해(CGDE)에 의한 후코이단의 저분자화)

  • Bae, Jung Shik;Lee, Jung Shik;Kim, Young Suk;Sim, Woo Jong;Lee, Ho;Chun, Ji Yeon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.886-891
    • /
    • 2008
  • Contact glow discharge electrolysis(CGDE) is an unconventional electrolysis where plasma is sustained by D.C. glow discharge between an electrode and the surface of electrolyte surrounding it at high voltage. In this study, the behavior of CGDE in NaCl solution and the depolymerization of fucoidan by CGDE were investigated. After onset of CGDE, increase of voltage enhanced Glow discharge which resulted in low current density and low temperature in NaCl electrolyte. From the variation of molecular weight of fucoidan with the reaction time, it was demonstrated that the degradation of fucoidan followed a first-order rate law. Molecular weight of fucoidan treated with CGDE was about 40 times lower compared to initial fucoidan without content decrease of sulfate and fucos.

The Effect of a Sol-gel Formed TiO2 Blocking Layer on the Efficiency of Dye-sensitized Solar Cells

  • Cho, Tae-Yeon;Yoon, Soon-Gil;Sekhon, S.S.;Kang, Man-Gu;Han, Chi-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3629-3633
    • /
    • 2011
  • The effect of a dense $TiO_2$ blocking layer prepared using the sol-gel method on the performance of dye-sensitized solar cells was studied. The blocking layer formed directly on the working electrode, separated it from the electrolyte, and prevented the back transfer of electrons from the electrode to the electrolyte. The dyesensitized solar cells were prepared with a working electrode of fluorine-doped tin oxide glass coated with a blocking layer of dense $TiO_2$, a dye-attached mesoporous $TiO_2$ film, and a nano-gel electrolyte, and a counter electrode of Pt-deposited FTO glass. The gel processing conditions and heat treatment temperature for blocking layer formation affected the morphology and performance of the cells, and their optimal values were determined. The introduction of the blocking layer increased the conversion efficiency of the cell by 7.37% for the cell without a blocking layer to 8.55% for the cell with a dense $TiO_2$ blocking layer, under standard illumination conditions. The short-circuit current density ($J_{sc}$) and open-circuit voltage ($V_{oc}$) also were increased by the addition of a dense $TiO_2$ blocking layer.

Measurement of Humidity Distribution in a Proton Exchange Membrane Fuel Cell Using Channel Embedded Humidity Sensors (채널 내장형 습도 센서를 이용한 고분자 전해질 연료전지의 습도분포 측정)

  • Lee, Yongtaek;Yang, Gyung Yull
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.397-403
    • /
    • 2015
  • In this study, water distribution inside a proton exchange membrane fuel cell (PEMFC) was measured experimentally. Water distribution is non-uniform because of vigorous chemical reaction and mass transport and has been difficult to measure experimentally. Therefore, much research relied on indirect measuring methods or numerical simulations. In this study, several mini temperature-humidity sensors were installed at the channel for measuring temperature and humidity of the flowing gas throughout the channel. Only one of two electrode channels was humidified externally, and the humidity distribution on the other side was measured, enabling the observation of water transport characteristics under various conditions. Diffusion through the membrane became more vigorous as the temperature of the humidifier rose, but at high current density, electro-osmotic drag became more effective than diffusion.