DOI QR코드

DOI QR Code

Measurement of Humidity Distribution in a Proton Exchange Membrane Fuel Cell Using Channel Embedded Humidity Sensors

채널 내장형 습도 센서를 이용한 고분자 전해질 연료전지의 습도분포 측정

  • Received : 2014.08.08
  • Accepted : 2015.03.15
  • Published : 2015.05.01

Abstract

In this study, water distribution inside a proton exchange membrane fuel cell (PEMFC) was measured experimentally. Water distribution is non-uniform because of vigorous chemical reaction and mass transport and has been difficult to measure experimentally. Therefore, much research relied on indirect measuring methods or numerical simulations. In this study, several mini temperature-humidity sensors were installed at the channel for measuring temperature and humidity of the flowing gas throughout the channel. Only one of two electrode channels was humidified externally, and the humidity distribution on the other side was measured, enabling the observation of water transport characteristics under various conditions. Diffusion through the membrane became more vigorous as the temperature of the humidifier rose, but at high current density, electro-osmotic drag became more effective than diffusion.

본 연구는 고분자 전해질 연료전지 (PEMFC)의 성능에 매우 중요한 영향을 미치는 물의 분포를 실험적으로 측정하였다. 내부에서 일어나는 활발한 화학반응과 물질전달 특성 때문에 PEMFC 내부에서 수분의 분포가 불균일하며 그 분포를 실험적으로 측정하기가 용이하지 않아 그 동안 간접적인 측정이 많이 이루어졌다. 본 연구에서는 초소형 온습도 센서를 연료전지의 채널에 직접 삽입하고 채널을 따라 흐르는 반응가스의 습도를 측정하였다. 수소극과 공기극 중 한곳만 가습하며, 가습하지 않은 곳에서 습도를 측정하여 멤브레인을 통한 물의 이동을 연구하였다. 가습기의 온도가 증가할수록 양극의 물농도 구배가 커져서 확산이 증가하나 높은 전류밀도에서는 전기삼투항력의 영향이 더욱 커졌다.

Keywords

References

  1. Lee, Y., Kim, Y., Jang, Y. and Choi, J.M., 2007, "Effects of External Humidification on the Performance of a Polymer Electrolyte Fuel Cell," Journal of Mechanical Science and Technology, Vol. 21, pp. 2188-2195. https://doi.org/10.1007/BF03177479
  2. Buchi, F.N. and Srinivasan S., 1997, "Operating Proton Exchange Membrane Fuel Cells without External Humidification of the Reactant Gases," Journal of the Electrochemical Society, Vol. 144, pp. 2767-2772. https://doi.org/10.1149/1.1837893
  3. Kim, S. and Hong, I., 2008, "Effects of Humidity and Temperature on a Proton Exchange Membrane Fuel Cell (PEMFC) Stack," Journal of Industrial and Engineering Chemistry, Vol. 14, pp. 357-364. https://doi.org/10.1016/j.jiec.2008.01.007
  4. Lee, Y., Kim, B. and Kim, Y., 2009, "Effects of Self-Humidification on the Dynamic Behavior of Polymer Electrolyte Fuel Cells," International Journal of Hydrogen Energy, Vol. 34, pp. 1999-2007. https://doi.org/10.1016/j.ijhydene.2008.12.042
  5. Liu, X., Guo, H. and Ma, C., 2006, "Water Flooding and Two-Phase Flow in Cathode Channels of Proton Exchange Membrane Fuel Cells," Journal of Power Sources, Vol. 156, pp. 267-280. https://doi.org/10.1016/j.jpowsour.2005.06.027
  6. Tuber, K., Pocza, D. and Hebling, C., 2003, "Visualization of Water Buildup in the Cathode of a Transparent PEM Fuel Cell,"Journal of Power Sources, Vol. 124, pp. 403-414. https://doi.org/10.1016/S0378-7753(03)00797-3
  7. Lee, Y., Kim, B. and Kim, Y., 2009, "An Experimental Study on Water Transport through the Membrane of a PEFC Operating in the Dead-end Mode,"International Journal of Hydrogen Energy, Vol. 34, pp. 7768-7779. https://doi.org/10.1016/j.ijhydene.2009.07.010
  8. Lee, D. and Bae, J., 2012, "Visualization of Flooding in a Single Cell and Stacks by Using a Newly-designed Transparent PEMFC," International Journal of Hydrogen Energy, Vol. 37, pp. 422-435. https://doi.org/10.1016/j.ijhydene.2011.09.073
  9. Park, J., Li, X., Tran, D., Abdel-Baset, T., Hussey, D.S., Jacobson, D.L. and Arif, M., 2008, "Neutron Imaging Investigation of Liquid Water Distribution in and the Performance of a PEM Fuel Cell," International Journal of Hydrogen Energy, Vol. 33, pp. 3373-3384. https://doi.org/10.1016/j.ijhydene.2008.03.019
  10. Ludlow, D.J., Calebrese, C.M., Yu, S.H., Dannehy, C.S., Jacobson, D.L., Hussey, D.S., Arif, M., Jensen, M.K. and Eisman, G.A., 2006, "PEM Fuel Cell Membrane Hydration Measurement by Neutron Imaging," Journal of Power Sources, Vol. 162, pp. 271-278. https://doi.org/10.1016/j.jpowsour.2006.06.068
  11. Yuan, X., Wang, H., Sun, J.C. and Zhang, J., 2007, "AC Impedance Technique in PEM Fuel Cell Diagnosis-A Review,"International Journal of Hydrogen Energy, Vol. 32, pp. 4365-4380. https://doi.org/10.1016/j.ijhydene.2007.05.036
  12. Guvelioglu, G. and Stenger, H.G., 2007, "Flow Rate and Humidification Effects on a PEM Fuel Cell Performance and Operation," Journal of Power Sources, Vol. 163, pp. 882-891. https://doi.org/10.1016/j.jpowsour.2006.09.052
  13. Gorgun, H., Arcak M. and Barbir F., 2006, "An Algorithm for Estimation of Membrane Water Content in PEM Fuel Cells," Journal of Power Sources, Vol. 157, pp. 389-394. https://doi.org/10.1016/j.jpowsour.2005.07.053
  14. Lee, Y., 2009, "Effects of Water Transport and Freezing on the Performance Characteristics of Polymer Electrolyte Fuel Cells," Ph. D. Thesis.