Browse > Article
http://dx.doi.org/10.9713/kcer.2013.51.5.615

Characterization of Commercial Membranes for Non-aqueous Vanadium Redox Flow Battery  

Sung, Ki-Won (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
Shin, Sung-Hee (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
Moon, Seung-Hyeon (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
Publication Information
Korean Chemical Engineering Research / v.51, no.5, 2013 , pp. 615-621 More about this Journal
Abstract
Membrane characterization methods for aqueous redox flow batteries aqueous RFBs were modified for non-aqueous RFBs. The modified characterization methods, such as ion exchange capacity, transport number, permeability and single cell test, were carried out to evaluate commercial membranes in non-aqueous electrolyte. It was found that columbic efficiency and energy efficiency in a single cell test were dependent on the ion selectivity of commercial anion exchange membranes. Neosepta AHA anion exchange membrane showed the anion transport number of 0.81, which is a relatively low ion selectivity in non-aqueous electrolyte, however, exhibited 92% of coulombic efficiency and 86% of energy efficiency in a single cell test. It was also found that a porous membrane without ion selectivity is suitable for a non-aqueous redox flow battery at a high current density.
Keywords
Non-aqueous Vanadium Redox Flow Battery; Commercial Membrane; Single Cell Test; Ion Selectivity; Ionic Conductivity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Zhang, D., Lan, H. and Li, Y., "The Application of a Non-aqueous bis(acetylacetone)ethylenediamine Cobalt Electrolyte in Redox Flow Battery," J. Power Sources, 217(1), 199-203(2012).   DOI
2 Shin, S.-H., Yun, S.-H. and Moon, S.-H., "A Review of Current Developments in Non-aqueous Redox Flow Batteries: Characterization of Their Membranes for Design Perspective," RSC Advances, 3(24), 9095-9116(2013).   DOI   ScienceOn
3 Zhang, B., Zhang, S., Xing, D., Han, R., Yin, C. and Jian, X., "Quaternized Poly(phthalazinone ether ketone ketone) Anion Exchange Membrane with Low Permeability of Vanadium Ions for Vanadium Redox Flow Battery Application," J. Power Sources, 217(1), 296-302(2012).   DOI
4 Seo, S.-J., Kim, B.-C., Sung, K.-W., Shim, J., Jeon, J.-D., Shin, K.-H., Shin, S.-H., Yun, S.-H., Lee, J.-Y. and Moon, S.-H., "Electrochemical Properties of Pore-filled Anion Exchange Membranes and Their Ionic Transport Phenomena for Vanadium Redox Flow Battery Applications," J. Membr. Sci., 428(1), 17-23(2013).   DOI   ScienceOn
5 Qiu, J., Zhang, J., Chen, J., Peng, J., Xu, L., Zhai, M., Li, J. and Wei, G., "Amphoteric Ion Exchange Membrane Synthesized by Radiation-induced Graft Copolymerization of Styrene and Dimethylaminoethyl Methacrylate Into PVDF Film for Vanadium Redox Flow Battery Applications," J. Membr. Sci., 334(1-2), 9-15(2009).   DOI   ScienceOn
6 Fang, J., Xu, H., Wei, X., Guo, M., Lu, X., Lan, C., Zhang, Y., Liu, Y. and Peng, T., "Preparation and Characterization of Quaternized Poly(2,2,2-trifluoroethyl methacrylate-co-N-vinylimidazole) Membrane for Vanadium Redox Flow Battery," Polym. Adv. Technol., 24(2), 168-173(2013).   DOI   ScienceOn
7 Teng, X., Zhao, Y., Xi, J., Wu, Z., Qiu, X. and Chen, L., "Nafion/organic Silica Modified $TiO_2$ Composite Membrane for Vanadium Redox Flow Battery via in situ Sol-gel Reactions," J. Membr. Sci., 341(1-2), 149-154(2009).   DOI   ScienceOn
8 Wang, N., Yu, J., Zhou, Z., Fang, D., Liu, S. and Liu, Y., "SPPEK/TPA Composite Membrane as a Separator of Vanadium Redox Flow Battery," J. Membr. Sci., 437(1), 114-121(2013).   DOI   ScienceOn
9 Zhao, P., Zhang, H., Zhou, H. and Yi, B., "Nickel Foam and Carbon Felt Applications for Sodium Polysulfide/bromine Redox Flow Battery Electrodes," Electrochimica Acta, 51(6), 1091-1098 (2005).   DOI   ScienceOn
10 Lim, H. S., Lackner, A. M. and Knechtli, R. C., "Zinc-Bromine Secondary Battery," J. Electrochem. Soc., 124(8), 1154-1157(1977).   DOI
11 Liu, Q., Sleightholme, A. E. S., Shinkle, A. A., Li, Y. and Thompson, L. T., "Non-aqueous Vanadium Acetylacetonate Electrolyte for Redox Flow Batteries," Electrochem. Commun., 11(12), 2312-2315 (2009).   DOI   ScienceOn
12 Matsuda, Y., Tanaka, K., Okada, M., Takasu, Y. and Morita, M., "A Rechargeable Redox Battery Utilizing Ruthenium Complexes with Non-aqueous Organic Electrolyte," J. Appl. Electrochem., 18(6), 909-914(1988).   DOI
13 Gupta, K. C., Abdulkadir, H. K. and Chand, S., "Polymer-immobilized N,N'-bis(acetylacetone)ethylenediamine Cobalt(II) Schiff Base Complex and Its Catalytic Activity in Comparison with That of Its Homogenized Analogue," J. Appl. Polym. Sci., 90(5), 1398-1411(2003).   DOI   ScienceOn
14 Chakrabarti, M. H., Dryfe, R. A. W. and Roberts, E. P. L., "Evaluation of Electrolytes for Redox Flow Battery Applications," Electrochim. Acta, 52(5), 2189-2195(2007).   DOI   ScienceOn
15 Sleightholme, A. E. S., Shinkle, A. A., Liu, Q., Li, Y., Monroe, C. W. and Thompson, L. T., "Non-aqueous Manganese Acetylacetonate Electrolyte for Redox Flow Batteries," J. Power Sources, 196(13), 5742-5745(2011).   DOI   ScienceOn
16 Yamamura, T., Shiokawa, Y., Yamana, H. and Moriyama, H., "Electrochemical Investigation of Uranium $\beta$-diketonates for All-uranium Redox Flow Battery," Electrochim. Acta, 48(1), 43-50(2002).   DOI   ScienceOn
17 Liu, Q., Shinkle, A. A., Li, Y., Monroe, C. W., Thompson, L. T. and Sleightholme, A. E. S., "Non-aqueous Chromium Acetylacetonate Electrolyte for Redox Flow Batteries," Electrochem. Commun., 12(11), 1634-1637(2010).   DOI   ScienceOn
18 Mun, J., Lee, M. J., Park, J. W., Oh, D. J., Lee, D. Y. and Doo, S. G., "Non-aqueous Redox Flow Batteries with Nickel and Iron Tris(2,2'-bipyridine) Complex Electrolyte, Electrochem," Solid State Lett., 15(6), A80-A82(2012).   DOI   ScienceOn
19 Kwak, N.-S., Sim, J. B. and Hwang, T. S., "Synthesis and Characteristics of UV Curable Dimethyl 5-Sulfoisophthalate Sodium Saltco-diethylene Glycol with Maleic and Phthalic Anhydride Copolymers (DMSIP-co-DEG-co-MA/PA) for Application in Redox Flow Batteries," Macromol. Res., 21(9), 941-948(2013).   DOI   ScienceOn
20 Sum, E. and Skylass-Kazacos, M., "A Study of the V(II)/V(III) Redox Couple for Redox Flow Cell Applications," J. Power Sources, 15(2-3), 179-190(1985).   DOI   ScienceOn
21 Sum, E., Rychcik, M. and Skylass-Kazacos, M., "Investigation of the V(V)-V(IV) System for Use in the Positive Half-cell of a Redox Battery," J. Power Sources, 16(2), 85-95(1985).   DOI   ScienceOn
22 Mohammadi, T. and Skylass-Kazacos, M., "Modification of Anionexchange Membranes for Vanadium Redox Flow Battery Applications," J. Power Sources, 63(2), 179-186(1996).   DOI   ScienceOn
23 Yang, C. Y., "Catalytic Electrodes for the Redox Flow Cell Energy Storage Device," J. Appl. Electrochem., 12(4), 425-434(1982).   DOI
24 Codina, G. and Aldaz, A., "Scale-up Studies of an Fe-Cr Redox Flow Battery Based on Shunt Current Analysis," J. Appl. Electrochem., 22(7), 668-674(1992).   DOI
25 Codina, G., Perez, J. R., Lopez-Atalaya, M., Vazquez, J. L. and Aldaz, A., "Development of a 0.1 kW Power Accumulation Pilot Plant Based on an Fe-Cr Redox Flow Battery Part 1. Considerations on Flow-distribution Design," J. Power Sources, 48(3), 293-302 (1994).   DOI   ScienceOn
26 Bartolozzi, M., "Development of Redox Flow Batteries a Historical Biblography," J. Power Sources, 27(3), 219-234(1989).   DOI   ScienceOn
27 Lopez-Atalaya, M., Codina, G., Perez, J. R., Vazquez, J. L. and Aldaz, A., "Optimization Studies on a Fe-Cr Redox Flow Battery," J. Power Sources, 39(2), 147-154(1992).   DOI   ScienceOn
28 Savinell, R. F., Liu, C. C., Galasco, R. T. and Chiang, S. H., "Discharge Characteristics of a Soluble Iron-Titanium Battery System," J. Electrochem. Soc., 126(3), 357-360(1979).   DOI