• Title/Summary/Keyword: heterojunction

Search Result 448, Processing Time 0.022 seconds

Research and Development Trend of Carrier Selective Energy Contact Solar Cells (전하선택형 태양전지의 연구개발 동향)

  • Cho, Eun-Chel;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.2
    • /
    • pp.43-48
    • /
    • 2018
  • The traditional silicon heterojunction solar cells consist of intrinsic amorphous silicon to prevent recombination of the silicon surface and doped amorphous silicon to transport the photo-generated electrons and holes to the electrode. Back contact solar cells with silicon heterojunction exhibit very high open-circuit voltages, but the complexity of the process due to form the emitter and base at the backside must be addressed. In order to solve this problem, the structure, manufacturing method, and new materials enabling the carrier selective contact (CSC) solar cell capable of achieving high efficiency without using a complicated structure have recently been actively developed. CSC solar cells minimize carrier recombination on metal contacts and effectively transfer charge. The CSC structure allows very low levels of recombination current (eg, Jo < 9fA/cm2), thereby achieves high open-circuit voltage and high efficiency. This paper summarizes the core technology of CSC solar cell, which has been spotlighted as the next generation technology, and is aiming to speed up the research and development in this field.

Simulation Study on Heterojunction InGaP/InAlGaP Solar Cell (InGaP/InAlGaP 이종 접합구조 태양전지 시뮬레이션 연구)

  • Kim, Junghwan
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.3
    • /
    • pp.162-167
    • /
    • 2013
  • An epitaxial layer structure for heterojunction p-InGaP/N-InAlGaP solar cell has proposed. Simulation for current density-voltage characteristics has been performed on p-InGaP/N-InAlGaP structure and the simulation results were compared with p-InGaP/p-GaAs/N-InAlGaP structure and homogeneous InGaP pn junction structure. The simulation result showed that the maximum output power and fill factor have greatly increased by replacing n-InGaP with N-InAlGaP. The thicknesses of p-InGaP and n-InAlGaP were optimized for the epitaxial layer structure of p-InGaP/N-InAlGaP.

Hybrid Solar Cells with Polymer/Fullerene Bulk Heterojunction Layers Containing in-situ Synthesized CdS Nanocrystals

  • Kwak, Eunjoo;Woo, Sungho;Kim, Hwajeong;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • v.2 no.4
    • /
    • pp.152-156
    • /
    • 2014
  • We report hybrid solar cells fabricated with polymer/fullerene bulk heterojunction layers that contain inorganic nanocrystals synthesized by in-situ reaction in the presence of polymer chains. The inorganic (cadmium sulfide) nanocrystal ($CdS_{NC}$) was generated by the reaction of cadmium acetate and sulfur by varying the reaction time up to 30 min. The synthesized $CdS_{NC}$ showed a rectangular flake shape, while the size of $CdS_{NC}$ reached ca. 150 nm when the reaction time was 10 min. The performance of hybrid solar cells with $CdS_{NC}$ synthesized for 10 min was better than that of a control device, whereas poor performances were measured for other hybrid solar cells with $CdS_{NC}$ synthesized for more than 10 min.

Design of Normally-Off AlGaN Heterojunction Field Effect Transistor Based on Polarization Engineering (분극 엔지니어링을 통한 상시불통형 질화알루미늄갈륨 이종접합 전계효과 트랜지스터 설계)

  • Cha, Ho-Young;Sung, Hyuk-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2741-2746
    • /
    • 2012
  • In this study, we propose a novel structure based on AlGaN substrate or buffer layer to implement a normally-off mode transistor that was difficult to be realized by conventional AlGaN/GaN heterojunction structures. The channel under the gate can be selectively depleted by growing an upper AlGaN barrier with a higher Al mole fraction and a top GaN charge elimination layer on AlGaN substrate or buffer layer. The proposed AlGaN heterojunction field effect transistor can achieve a threshold voltage of > 2 V, which is generally required in power device specification.

Characteristics of Ga2O3/4H-SiC Heterojunction Diode with Annealing Process (후열 처리에 따른 Ga2O3/4H-SiC 이종접합 다이오드 특성 분석)

  • Lee, Young-Jae;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.155-160
    • /
    • 2020
  • Ga2O3/n-type 4H-SiC heterojunction diodes were fabricated by RF magnetron sputtering. The optical properties of Ga2O3 and electrical properties of diodes were investigated. I-V characteristics were compared with simulation data from the Atlas software. The band gap of Ga2O3 was changed from 5.01 eV to 4.88 eV through oxygen annealing. The doping concentration of Ga2O3 was extracted from C-V characteristics. The annealed oxygen exhibited twice higher doping concentration. The annealed diodes showed improved turn-on voltage (0.99 V) and lower leakage current (3 pA). Furthermore, the oxygen-annealed diodes exhibited a temperature cross-point when temperature increased, and its ideality factor was lower than that of as-grown diodes.

High-Efficiency Heterojunction with Intrinsic Thin-Layer Solar Cells: A Review

  • Dao, Vinh Ai;Kim, Sangho;Lee, Youngseok;Kim, Sunbo;Park, Jinjoo;Ahn, Shihyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.73-81
    • /
    • 2013
  • Heterojunction with Intrinsic Thin-layer (HIT) solar cells are currently an important subject in industrial trends for thinner solar cell wafers due to the low-temperature of production processes, which is around $200^{\circ}C$, and due to their high-efficiency of 24.7%, as reported by the Panasonic (Sanyo) group. The use of thinner wafers and the enhancement of cell performance with fabrication at low temperature have been special interests of the researchers. The fundamental understanding of the band bending structures, choice of materials, fabrication process, and nano-scale characterization methods to provide necessary understanding of the interface passivation mechanisms, emitter properties, and requirements for transparent oxide conductive layers is presented in this review. This information should be used for the performance characterization of the developing technologies for HIT solar cells.

Active Optical Logic Devices Using Surface-emitting Microlasers (표면광 마이크로 레이저를 이용한 능동형 광 논리 소자의 동작 특성)

  • 유지영
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.294-300
    • /
    • 1993
  • Monolithic NOR and INVERTER active optical logic devices inte- grated with surface-emitting microlasers, heterojunction photo- transistors(HPT) in parallel and resistors in series are characterized. The differential quantum efficiency of the typical AlGaAs superlattice microlaser integrated in the active optical logic devices is 15%. Current gain of the HPT is 57, when emitter-collector voltage and input optical power are 4 V and $50{\mu}W$, respectively. $57{\mu}W$ of output power from the active optical logic device decreases to zero when $47{\mu}W$ of input optical power is incident on the HPT part of the active logic device.

  • PDF

Fabrication and characterization of n-ZnO:Ga/p-Si heterojunction light emitting diodes (n-ZnO:Ga/p-Si 이종접합 발광 다이오드의 제작 및 특성 평가)

  • Han, W.S.;Kong, B.H.;Ahn, C.H.;Cho, H.K.;Kim, B.S.;Hwang, D.M.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.97-98
    • /
    • 2008
  • n-ZnO/p-Si heterostructure is a good candidate for ZnO-based heterojunction light emitting diodes(LED) because of its competitive price and lower driving voltage. However, the conventional LED shows much lower extraction efficiency, because it has small top contact and large backside contact. In this structure, the injected current from the top contact enters the active region underneath the top contact. Thus, the emitted light is hindered by the opaque top contact. This problem can be solved by using a current-blocking layer(CBL) that prevents the current injection into the active region below the top contact.

  • PDF

Correlation Between Crystal Structure and Properties in Polymer Solar Cells (고분자 태양전지의 결정구조와 특성의 상관성)

  • Kim, Jung Yong
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.88-93
    • /
    • 2008
  • The bulk-heterojunction polymer solar cell based on regioregular P3HT (poly(3-hexylthiophene)) and PCBM (methanofullerene [6,6]-phenyl $C_{61}$-butyric acid methyl ester) was fabricated. Annealing effects on the crystal structure of polymer-fullerene blends as well as the UV-VIS electronic absorption spectroscopy were investigated. The correlation between the crystal organization of bulk-heterojunction film and the power conversion efficiency of solar cell was studied. Resultantly, the polymer solar cell annealed on $150^{\circ}C$ for 30 min, showed both the enhanced molecular interactions and the optimized crystal structure and displayed the power conversion efficiency of 3.2 %.

Enhancing Solar Cell Properties of Heterojunction Solar Cell in Amorphous Silicon Carbide (수광층의 카바이드 함량 변화에 따른 실리콘 이종접합 태양전지 특성 변화)

  • Kim, Hyunsung;Kim, Sangho;Lee, Youngseok;Jeong, Jun-Hui;Kim, Yongjun;Dao, Vinh Ai;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.376-379
    • /
    • 2016
  • In this paper, the efficiency improvement of the heterojunction with intrinsic thin layer (HIT) solar cells is obtained by optimization process of p-type a-SiC:H as emitter. The optoelectronic of p-type a-SiC:H layers including the optical band-gap and conductivity under the methane gas content variation is conducted in detail. A significant increase in the Jsc by $1mA/cm^2$ and Voc by 30 mV are attributed to enhanced photon-absorption due to broader band-gap of p-a-SiC:H and reduced band-offsets at p-side interface, respectively of HIT solar cells.