Browse > Article
http://dx.doi.org/10.21218/CPR.2018.6.2.043

Research and Development Trend of Carrier Selective Energy Contact Solar Cells  

Cho, Eun-Chel (School of Electronic & Electrical engineering, Sungkyunkwan University)
Cho, Young Hyun (School of Electronic & Electrical engineering, Sungkyunkwan University)
Yi, Junsin (School of Electronic & Electrical engineering, Sungkyunkwan University)
Publication Information
Current Photovoltaic Research / v.6, no.2, 2018 , pp. 43-48 More about this Journal
Abstract
The traditional silicon heterojunction solar cells consist of intrinsic amorphous silicon to prevent recombination of the silicon surface and doped amorphous silicon to transport the photo-generated electrons and holes to the electrode. Back contact solar cells with silicon heterojunction exhibit very high open-circuit voltages, but the complexity of the process due to form the emitter and base at the backside must be addressed. In order to solve this problem, the structure, manufacturing method, and new materials enabling the carrier selective contact (CSC) solar cell capable of achieving high efficiency without using a complicated structure have recently been actively developed. CSC solar cells minimize carrier recombination on metal contacts and effectively transfer charge. The CSC structure allows very low levels of recombination current (eg, Jo < 9fA/cm2), thereby achieves high open-circuit voltage and high efficiency. This paper summarizes the core technology of CSC solar cell, which has been spotlighted as the next generation technology, and is aiming to speed up the research and development in this field.
Keywords
Carrier selective contact solar cells; heterojunction; electron selective contact; hole selective contact;
Citations & Related Records
연도 인용수 순위
  • Reference
1 ISFH 홈페이지, https://isfh.de/en/26-1-record-efficiency-for-p-type-crystalline-si-solar-cells/
2 M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, E. Maruyama, 24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer, IEEE J. of Photovoltaics, Vol. 4, No. 1, pp. 96, 2014.   DOI
3 M. K. Stodolny, J. Anker, B. L. J. Geerligs, G. J. M. Janssen, B. W. H. van de Loo, J. Melskens, R. Santbergen, O. Isabella, J. Schmitz, M. Lenes, J. Luchies, W. M. M. Kessels, I. Romijn, "Material properties of LPCVD processed n-type polysilicon passivating contacts and its application in PERPoly industrial bifacial solar cells", Sol. Energy mater. and Sol. cell, 124, 635, 2017.
4 W. Nemeth, V. LaSalvia, M. R. Page, E. L. Warren, A. Dameron, A. G. Norman, B. G. Lee, D. L. Young, P. Stradins, "Implementation of Tunneling Pasivated Contacts into Industrially Relevant n-Cz Si Solar Cells", 42nd IEEE PVSC, 2015.
5 Y. Tao, V. Upadhyaya, C.-W. Chen, A. Payne, E. L. Chang, A. Upadhyaya, A. Rohatgi, "Large area tunnel oxide passivated rear contact n-type Si solar cells with 21.2% efficiency", Prog. in Photovol., Vol. 24, No. 6, pp. 830-835, 2016.   DOI
6 X. Yang, K. Weber, Z. Hameiri, S. De Wolf, "Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells", Prog. Photovol., Vol. 25, No. 11, pp. 896 2017.   DOI
7 Y. Wan, C. Samundsett, J. Bullock, T. Allen, M. Hettick, D. Yan, P. Zheng, X. Zhang, J. Cui, J. McKeon, A. Javey, A. Cuevas, "Magnesium Fluoride Electron-Selective Contacts for Crystalline Silicon Solar Cells", ACS Appl. Mater. Interfaces, Vol. 8, No. 23, pp. 14671-14677, 2016.   DOI
8 J. Bullock, M. Hettick, J. Geissbuhler, A. J. Ong, T. Allen, C. M. Sutter-Fella, T. Chen, H. Ota, E. W. Schaler, S. De Wolf, C. Ballif, A. Cuevas, A. Javey, Efficient silicon solar cells with dopant-free asymmetric heterocontacts, Nat. Energy, Vol. 1, pp. 15031, 2016.   DOI
9 J. Bullock, Y. Wan, Z. Xu, S. Essig, M. Hettick, H. Wang, W. Ji, M. Boccard, A. Cuevas, C. Ballif, A. Javey, "Stable Dopant-Free Asymmetric Heterocontact Silicon Solar Cells with Efficiencies above 20%", ACS Energy Lett. Vol. 3, pp. 508, 2018.   DOI
10 C. Battaglia, X. Yin, M. Zheng, I. D. Sharp, T. Chen, S. McDonnell, A. Azcatl, C. Carraro, B. Ma, R. Maboudian, R. M. Wallace, A. Javey, Nano Lett., Vol. 14, pp. 967, 2014.   DOI
11 C. Battaglia, S. M. de Nicolas, S. De Wolf, X. Yin, M. Zheng, C. Ballif, A. Javey, "Silicon heterojunction solar cell with passivated hole selective MoOx contact", Appl. Phys. Lett., 104, 113902, 2014.   DOI
12 J. Geissbuhler, J. Werner, S. M. Nicolas, L. Barraud, A. Hessler-Wyser, M. Despeisse, S. Nicolay, A. Tomasi, B. Niesen, S. D. Wolf, C. Ballif, "22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector", Appl. Phys. Lett., 107, 081601, 2015.   DOI
13 E. Yablonovitch, T. Gmitter, "A 720 mV open circuit voltage SiOx:c-Si:SiOx double heterostructure solar cell", Appl. Phys. Lett. 47, 1211, 1985.   DOI
14 M. A. Green, Y. Hishikawa, W. Warta, Ewan D. Dunlop, D. H. Levi, J. Hohl-Ebinger, A. W. H. Ho-Baillie, "Solar cell efficiency tables (version 50)". Prog. Photovolt., Vol. 25, No. 7, pp. 668-676, 2017.   DOI
15 P. Gao, Z. Yang, J. He, J. Yu, P. Liu, J. Zhu, Z. Ge, J. Ye, "Dopant-Free and Carrier- Selective Heterocontacts for Silicon Solar Cells: Recent Advances and Perspectives", Advanced Science, 1700547, 2017.
16 K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, "Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%". Nat Energy. 2, 17032, 2017.   DOI
17 D. Zielke, J. Hendrik Petermann, F. Werner, B. Veith, R. Brendel, J. Schmidt, "Contact passivation in silicon solar cells using atomic-layer-deposited aluminum oxide layers", Physica Status Solidi (RRL) Rapid Research Letters, Vol. 5, No. 8, pp. 298, 2011.   DOI
18 D. L. Young, W. Nemeth, S. Grover, A. Norman, H. Yuan, B. Lee, V. LaSalvia, P. Stradins, "Carrier Selective, Passivated Contacts for High Efficiency Silicon Solar Cells based on Transparent Conducting Oxides", Energy Procedia, 55, 733, 2014.   DOI
19 A. Richter, J. Benick, F. Feldmann, A. Fell, M. Hermle, S. W. Glunz, "n-Type Si solar cells with passivating electron contact: identifying sources for efficiency limitations by wafer thickness and resistivity variation". Sol. Energy Mater. and Sol. Cells. 173, 96, 2017.   DOI
20 F. Feldmanna, C. Reichel, R. Muller, M. Hermle, The application of poly-Si/SiOx contacts as passivated top/rear contacts in Si solar cells, Sol. Energy mater. and Sol. cell, 159, 265, 2017.   DOI
21 F. Haase1, F. Kiefer, S. Schäfer, C. Kruse1, J. Krugener, R. Brendel, R. Peibst, "Interdigitated back contact solar cells with polycrystalline silicon on oxide passivating contacts for both polarities", Jpn. J. Appl. Phys. 56 08MB15, 2017.   DOI