• Title/Summary/Keyword: helicoids

Search Result 7, Processing Time 0.026 seconds

HELICOIDAL KILLING FIELDS, HELICOIDS AND RULED MINIMAL SURFACES IN HOMOGENEOUS THREE-MANIFOLDS

  • Kim, Young Wook;Koh, Sung-Eun;Lee, Hyung Yong;Shin, Heayong;Yang, Seong-Deog
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1235-1255
    • /
    • 2018
  • We provide definitions for the helicoidal Killing field and the helicoid in arbitrary three-manifolds, and investigate helicoids and ruled minimal surfaces in homogeneous three-manifolds, mainly in $SL_2{\mathbb{R}}$ and Sol(3). In so doing we finish our classification of ruled minimal surfaces in homogeneous three-manifolds with the isometry group of dimension 4.

STABLE MINIMAL HYPERSURFACES IN THE HYPERBOLIC SPACE

  • Seo, Keom-Kyo
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.253-266
    • /
    • 2011
  • In this paper we give an upper bound of the first eigenvalue of the Laplace operator on a complete stable minimal hypersurface M in the hyperbolic space which has finite $L^2$-norm of the second fundamental form on M. We provide some sufficient conditions for minimal hypersurface of the hyperbolic space to be stable. We also describe stability of catenoids and helicoids in the hyperbolic space. In particular, it is shown that there exists a family of stable higher-dimensional catenoids in the hyperbolic space.

SOME CLASSIFICATIONS OF RULED SUBMANIFOLDS

  • Kim, Dong-Soo;Kim, Young Ho;Jung, Sun Mi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.823-829
    • /
    • 2014
  • Ruled submanifolds in Euclidean space satisfying some algebraic equations concerning the Laplace operator related to the isometric immersion and Gauss map are studied. Cylinders over a finite type curve or generalized helicoids are characterized with such algebraic equations.

MINIMAL SURFACE SYSTEM IN EUCLIDEAN FOUR-SPACE

  • Hojoo Lee
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.71-90
    • /
    • 2023
  • We construct generalized Cauchy-Riemann equations of the first order for a pair of two ℝ-valued functions to deform a minimal graph in ℝ3 to the one parameter family of the two dimensional minimal graphs in ℝ4. We construct the two parameter family of minimal graphs in ℝ4, which include catenoids, helicoids, planes in ℝ3, and complex logarithmic graphs in ℂ2. We present higher codimensional generalizations of Scherk's periodic minimal surfaces.

RULED MINIMAL SURFACES IN PRODUCT SPACES

  • Jin, Yuzi;Kim, Young Wook;Park, Namkyoung;Shin, Heayong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1887-1892
    • /
    • 2016
  • It is well known that the helicoids are the only ruled minimal surfaces in ${\mathbb{R}}^3$. The similar characterization for ruled minimal surfaces can be given in many other 3-dimensional homogeneous spaces. In this note we consider the product space $M{\times}{\mathbb{R}}$ for a 2-dimensional manifold M and prove that $M{\times}{\mathbb{R}}$ has a nontrivial minimal surface ruled by horizontal geodesics only when M has a Clairaut parametrization. Moreover such minimal surface is the trace of the longitude rotating in M while translating vertically in constant speed in the direction of ${\mathbb{R}}$.

MINIMAL SURFACES IN ℝ4 FOLIATED BY CONIC SECTIONS AND PARABOLIC ROTATIONS OF HOLOMORPHIC NULL CURVES IN ℂ4

  • Lee, Hojoo
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.1-19
    • /
    • 2020
  • Using the complex parabolic rotations of holomorphic null curves in ℂ4 we transform minimal surfaces in Euclidean space ℝ3 to a family of degenerate minimal surfaces in Euclidean space ℝ4. Applying our deformation to holomorphic null curves in ℂ3 induced by helicoids in ℝ3, we discover new minimal surfaces in ℝ4 foliated by hyperbolas or straight lines. Applying our deformation to holomorphic null curves in ℂ3 induced by catenoids in ℝ3, we rediscover the Hoffman-Osserman catenoids in ℝ4 foliated by ellipses or circles.