References
- J. Barbosa, M. Dajczer, and L. Jorge, Minimal ruled submanifolds in spaces of constant curvature, Indiana Univ. Math. J. 33 (1984), no. 4, 531-547. https://doi.org/10.1512/iumj.1984.33.33028
- A. Candel, Eigenvalue estimates for minimal surfaces in hyperbolic space, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3567-3575. https://doi.org/10.1090/S0002-9947-07-04104-9
- M. do Carmo and M. Dajczer, Rotation hypersurfaces in spaces of constant curvature, Trans. Amer. Math. Soc. 277 (1983), no. 2, 685-709. https://doi.org/10.1090/S0002-9947-1983-0694383-X
- M. do Carmo and C. K. Peng, Stable complete minimal hypersurfaces, Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, Vol. 1, 2, 3 (Beijing, 1980), 1349-1358, Science Press, Beijing, 1982.
- I. Chavel, Isoperimetric Inequalities, Cambridge Tracts in Mathematics, 145. Cambridge University Press, Cambridge, 2001.
- S. Y. Cheng, P. Li, and S.-T. Yau, Heat equations on minimal submanifolds and their applications, Amer. J. Math. 106 (1984), no. 5, 1033-1065. https://doi.org/10.2307/2374272
- S. S. Chern, M. do Carmo, and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, 1970 Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, Ill., 1968) pp. 59-75 Springer, New York.
- L. F. Cheung and P. F. Leung, Eigenvalue estimates for submanifolds with bounded mean curvature in the hyperbolic space, Math. Z. 236 (2001), no. 3, 525-530. https://doi.org/10.1007/PL00004840
- J. Choe, The isoperimetric inequality for minimal surfaces in a Riemannian manifold, J. Reine Angew. Math. 506 (1999), 205-214.
- D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980), no. 2, 199-211. https://doi.org/10.1002/cpa.3160330206
- D. Hoffman and J. Spruck, Sobolev and isoperimetric inequalities for Riemannian submanifolds, Comm. Pure Appl. Math. 27 (1974), 715-727.
-
H. P. McKean, An upper bound to the spectrum of
$\Delta$ on a manifold of negative curvature, J. Differential Geometry 4 (1970), 359-366. -
H. Mori, Minimal surfaces of revolution in
$H^{3}$ and their global stability, Indiana Univ. Math. J. 30 (1981), no. 5, 787-794. https://doi.org/10.1512/iumj.1981.30.30057 - J. Ripoll, Helicoidal minimal surfaces in hyperbolic space, Nagoya Math. J. 114 (1989), 65-75. https://doi.org/10.1017/S0027763000001409
-
L.-F. Tam and D. Zhou, Stability properties for the higher dimensional catenoid in
$R^{n+1}$ , Proc. Amer. Math. Soc. 137 (2009), no. 10, 3451-3461. https://doi.org/10.1090/S0002-9939-09-09962-6 - Y. L. Xin, Bernstein type theorems without graphic condition, Asian J. Math. 9 (2005), no. 1, 31-44. https://doi.org/10.4310/AJM.2005.v9.n1.a3
Cited by
- Lpharmonic 1-forms and first eigenvalue of a stable minimal hypersurface vol.268, pp.1, 2014, https://doi.org/10.2140/pjm.2014.268.205
- Fundamental tone of minimal hypersurfaces with finite index in hyperbolic space vol.2016, pp.1, 2016, https://doi.org/10.1186/s13660-016-1071-7
- Vanishing theorems for $$L^{2}$$ L 2 harmonic forms on complete Riemannian manifolds vol.184, pp.1, 2016, https://doi.org/10.1007/s10711-016-0165-1
- On the Fundamental Tone of Minimal Submanifolds with Controlled Extrinsic Curvature vol.40, pp.3, 2014, https://doi.org/10.1007/s11118-013-9349-6
- Conformal type of ends of revolution in space forms of constant sectional curvature vol.49, pp.2, 2016, https://doi.org/10.1007/s10455-015-9484-y
- Stable minimal hypersurfaces in a Riemannian manifold with pinched negative sectional curvature vol.41, pp.4, 2012, https://doi.org/10.1007/s10455-011-9293-x