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SOME CLASSIFICATIONS OF RULED SUBMANIFOLDS

Dong-Soo Kim, Young Ho Kim, and Sun Mi Jung

Abstract. Ruled submanifolds in Euclidean space satisfying some alge-
braic equations concerning the Laplace operator related to the isometric
immersion and Gauss map are studied. Cylinders over a finite type curve
or generalized helicoids are characterized with such algebraic equations.

1. Introduction

The theory of minimal submanifolds is still a very interesting subject in
differential geometry from various points of view. As of minimal surfaces, it is
well known that the only minimal ruled surfaces in Euclidean 3-space is part of
the plane or the helicoid by the theorem of Catalan. This notion was generalized
by the theory of ruled submanifolds in a Riemannian manifold in such a way
that they are defined by a foliation of totally geodesic submanifolds of a given
Riemannian manifold. In particular, if the ambient manifold is Euclidean, it
is more interesting. The minimal ruled submanifold in Euclidean space was
independently studied by Lumiste ([11]) and Barbosa et al. ([3]). They showed
that a minimal ruled submanifold of Euclidean space is part of the plane or the
generalized helicoid up to rigid motion parameterized by

x(s, t1, . . . , tn) = (t1 cos(a1s), t1 sin(a1s), . . . ,

tk cos(aks), tk sin(aks), tk+1, . . . , tn, bs),

where a1, a2, . . . , ak and b are real numbers.
On the other hand, a minimal submanifold M in Euclidean space E

m with
the isometric immersion x : M → E

m is characterized by their immersions
and the Laplace operator ∆ defined on them, namely, ∆x = 0. Generalizing
this, Takahashi showed: Let x : M → E

m be an isometric immersion of a
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Riemannian manifold M into the Euclidean space E
m. If ∆x = λx (λ 6= 0)

holds, then M is a minimal submanifold in a hypersphere of Euclidean space
([12]).

Extending this point of view, in the late 1970’s by using the spectral decom-
position Chen introduced the notion of finite type smooth map on Riemannian
manifolds in Euclidean space ([4, 5]). A smooth map Φ on a Riemannian man-
ifold M into an m-dimensional Euclidean space E

m is said to be of finite type

if Φ can be expressed as a finite sum of eigenvectors of the Laplacian ∆ of M ,
that is, Φ = Φ0+Σk

i=1Φi, where Φ0 is a constant map, Φ1, . . . ,Φk non-constant
maps such that ∆Φi = λiΦi, λi ∈ R, i = 1, 2, . . . , k ([4, 5]). Furthermore, M is
said to be of k -type if all eigenvalues λ1, λ2, . . ., λk are mutually different. In
particular, null 1-type submanifolds in Euclidean space are minimal and null
1-type smooth vector fields are also said to be harmonic.

In this regards, Dillen ([7]) showed that an n-dimensional ruled submanifold
in E

m of finite type immersion is part of either a cylinder on a curve of finite
type or the generalized helicoid.

On the other hand, in [1] Baikoussis proved that an n-dimensional ruled
submanifold M in E

m with finite type Gauss map is part of an n-plane. In the
case, the Gauss map G is in fact harmonic, that is, ∆G = 0.

However, if the Laplacian of each component XA (A = 1, 2, . . . ,m) of a
certain vector field X in E

m is a linear function in X1, X2, . . . , Xm, it is not of
finite type in general. In other words, it has the form

∆X = AX + b

for some m×m-matrix A and a constant vector b (cf. [2, 8, 9]).
In this article, we study the ruled submanifold M in the Euclidean space

E
m satisfying the equation

∆x = Ax+ b and ∆G = AG+ b

for some m × m-matrix A and a constant vector b, where x is the isometric
immersion of M into E

m and G is the Gauss map defined on M .
All of geometric objects under consideration are smooth and submanifolds

are assumed to be connected unless otherwise stated.

2. Preliminaries

Let M be an n-dimensional Riemannian manifold isometrically immersed
into an m-dimensional Euclidean space E

m via the immersion x.
Let (x1, x2, . . . , xn) be a local coordinate system of M in E

m. For the com-
ponents gij of the metric 〈·, ·〉 on M induced from that of Em, we denote by
(gij) (respectively, G) the inverse matrix (respectively, the determinant) of the
matrix (gij). Then, the Laplacian ∆ on M is given by

∆ = −
1

√

|G|

∑

i,j

∂

∂xi
(
√

|G|gij
∂

∂xj
).
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We now choose an adapted local orthonormal frame {e1, e2, . . . , em} in E
m

such that e1, e2, . . . , en are tangent to M and en+1, en+2, . . . , em normal to M .
The Gauss map G : M → G(n,m) ⊂ E

N (N = mCn), G(p) = (e1 ∧ e2 ∧
· · · ∧ en)(p), of x is a smooth map which carries a point p in M to an oriented
n-plane in E

m which is obtained from the parallel translation of the tangent
space of M at p to an n-plane passing through the origin in E

m, where G(n,m)
is the Grassmannian manifold consisting of all oriented n-planes through the
origin of Em.

An inner product ≪ ·, · ≫ on G(n,m) ⊂ E
N is defined by

≪ ei1 ∧ . . . ∧ ein , ej1 ∧ · · · ∧ ejn ≫= det(〈eil , ejk〉).

Then, {ei1 ∧ ei2 ∧ · · · ∧ ein | 1 ≤ i1 < · · · < in ≤ m} is an orthonormal basis of
E
N .
We now consider a ruled submanifoldM over the base curve α parameterized

by

x = x(s, t1, t2, . . . , tr) = α(s) +

r
∑

i=1

tiei(s), s ∈ I, ti ∈ Ii,

where Ii’s are some open intervals for i = 1, 2, . . . , r.
Here, we may assume that the base curve α is of unit speed and

〈α′(s), ei(s)〉 = 0, 〈ei(s), ej(s)〉 = δij 〈e′i(s), ej(s)〉 = 0

for i, j = 1, 2, . . . , r.
For each s, let E(s, r) be an open subset of Span{e1, e2, . . . , er}, the linear

span of e1, e2, . . . , er. We call E(s, r) the rulings of M . In particular, the
ruled submanifold M is said to be cylindrical if E(s, r) is parallel along α, or
non-cylindrical otherwise.

3. Ruled submanifolds satisfying ∆x = Ax + b

Let M be an (r + 1)-dimensional ruled submanifold in E
m with the base

curve α. Without loss of generality, we may assume that α is a unit speed
curve, that is, 〈α′(s), α′(s)〉 = 1. From now on, the prime ′ denotes d/ds unless
otherwise stated. We may also choose orthonormal vector fields e1(s), . . . , er(s)
generating the rulings along α with

(3.1) 〈α′(s), ei(s)〉 = 0, 〈e′i(s), ej(s)〉 = 0, i, j = 1, 2, . . . , r.

A parametrization of M is given by

(3.2) x = x(s, t1, t2, . . . , tr) = α(s) +

r
∑

i=1

tiei(s).

We now consider the case that the ruled submanifold M is cylindrical. Then,
we may take the generators e1, e2, . . . , er of the rulings E(s, r) as constant
vector fields.
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Suppose M satisfies the equation

(3.3) ∆x = Ax+ b

for some m×m-matrix A and a constant vector b. Then, by Cayley-Hamilton’s
Theorem, there exist some constants c0, c1, . . . , cm such that

(3.4) Am + coA
m−1 + · · ·+ cm−1A+ cmI = 0,

where I denotes the identity matrix of degree m. Using (3.3), we have

∆m+1x+ c0∆
mx+ · · ·+ cm∆x = 0.

According to Proposition 4.1 in [6], the base curve α is of finite type. Therefore,
we have:

Theorem 3.1. Let M be a cylindrical ruled submanifold of Em satisfying ∆x =
Ax+ b for some m×m-matrix A and a constant vector b ∈ R

m. Then, M is

a cylinder over the finite type base curve.

Next, consider the case that M is non-cylindrical.
If we define a function q on M by

(3.5) q = ||xs||
2 = 1 + 2

r
∑

i=1

ti〈α
′, e′i〉+

r
∑

i,j=1

titj〈e
′

i, e
′

j〉,

then the Laplacian ∆ of M is given by

∆ =
1

2q2
∂q

∂s

∂

∂s
−

1

q

∂2

∂s2
−

1

2q

r
∑

i=1

∂q

∂ti

∂

∂ti
−

r
∑

i=1

∂2

∂t2i
.

The function q is a polynomial in t = (t1, t2, . . . , tr) with functions of s as
coefficients. Since M is non-cylindrical, we may assume that q has degree 2 in
t without loss of generality. Then, we can easily have:

Lemma 3.1 ([7]). Let M be a non-cylindrical ruled submanifold in E
m parame-

trized by (3.2). If P is a polynomial with functions in s as coefficients and

deg(P ) = d, then

∆(
P (t)

qm
) =

P̃ (t)

qm+3
,

where P̃ is a polynomial in t with functions in s as coefficients and deg(P̃ ) ≤
d+ 4.

We now suppose that M satisfies (3.3) for a non-trivial matrix A. Then, for
some constant c0, c1, . . . , cm, we have

∆m+1x+ c0∆
mx+ · · ·+ cm∆x = 0.

Let xA be the A-th component of x in E
m, where A = 1, 2, . . . ,m. Then,

∆xA =
QA(t)

q2
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for some polynomial QA(t) in t = (t1, t2, . . . , tr) with degQA(t) ≤ 5. By
applying Lemma 3.2, we have

∆jxA =
QAj(t)

q3j−1
,

with degQAj ≤ 1 + 4j, j = 1, 2, . . .. If j goes up by one, the degree of
numerator of ∆jxA goes up by at most 3 while that of the denominator goes
up by 4. Thus, for some positive integer i, ∆i+1x + λ1∆

ix + · · · + λi∆x = 0
never occurs unless ∆x = 0, that is, M is minimal. Therefore, the matrix A
must be zero. Hence, we have:

Theorem 3.2. Let M be a non-cylindrical ruled submanifold of Em satisfying

∆x = Ax+ b for some m×m-matrix A and a constant vector b ∈ R
m. Then,

M is minimal, i.e., M is part of a plane or a generalized helicoid.

If we consider the result of [7], we have the following characterization of the
ruled submanifold of finite type immersion.

Theorem 3.3. Let x : M → E
m be an isometric immersion of ruled submani-

fold in E
m. Then, x is of finite type if and only if M is part of a cylinder over

a finite type curve or x satisfies ∆x = Ax + b for some m×m-matrix A and

a constant vector b ∈ R
m.

4. Ruled submanifolds satisfying ∆G = AG + b

In this section, we always assume that the parametrization (3.2) satisfies the
condition (3.1). Then, M has the Gauss map

G =
1

‖xs‖
xs ∧ xt1 ∧ · · · ∧ xtr ,

or, equivalently

(4.1) G =
1

q1/2
(Φ +

r
∑

i=1

tiΨi),

where the vectors Φ and Ψi are defined by

Φ = α′ ∧ e1 ∧ · · · ∧ er and Ψi = e′i ∧ e1 ∧ · · · ∧ er

for i = 1, 2, . . . , r.
Now, we prove:

Theorem 4.1. The only ruled submanifolds of E
m with ∆G = AG + b for

some matrix A and a vector b are parts of planes or cylinders over a curve of

finite type.

Proof. Let M be a cylindrical (r + 1)-dimensional ruled submanifold parame-
terized by (3.2) in E

m satisfying

(4.2) ∆G = AG+ b
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for some m × m-matrix A and a constant vector b. We may assume that
e1, e2, . . . , er generating the rulings are constant vectors.

The Laplacian ∆ of M is then naturally expressed by

∆ = −
∂2

∂s2
−

r
∑

i=1

∂2

∂t2i

and the Gauss map G of M is given by

G = α′ ∧ e1 ∧ · · · ∧ er.

If we denote by ∆′ the Laplacian of α, that is ∆′ = − ∂2

∂s2 , we have the Laplacian
∆G of the Gauss map

(4.3) ∆G = ∆′α′ ∧ e1 ∧ · · · ∧ er.

Since (4.2) holds, we have (3.4) and thus we obtain

(4.4) ∆m+1G+ c0∆
mG+ · · ·+ cm∆G = 0,

or, equivalently,

∆′m+1α′ + c0∆
′kα′ + · · ·+ cm∆′α′ = 0,

which implies that α′(s) = a1 + a2s +
∑k

i=1{b̃i cos(lis) + c̃i sin(lis)} for some
positive integer k, where l1 < l2 < · · · < lk are positive real numbers and
a1, a2, b̃i, c̃i are vectors in E

m such that bi and ci are not simultaneously zero
for each i = 1, 2, . . . , k (cf. [10]). Since we assume that the base curve α is
of unit speed, the coefficient a2 vanishes. Thus, we have α(s) = ã0 + ã1s +

+
∑k

j=1{bi cos(lis) + ci sin(lis)} where ã0, ã1, ã2, bi, ci are vectors in E
m such

that bi and ci are not simultaneously zero for each i = 1, 2, . . . , k. This implies
that the curve α is of finite type.

We now suppose that a non-cylindrical ruled submanifold M satisfies ∆G =
AG+ b for some m×m-matrix A and a constant vector b. Then we have the
Laplacian

∆ =
1

2q2
∂q

∂s

∂

∂s
−

1

q

∂2

∂s2
−

1

2q

r
∑

i=1

∂q

∂ti

∂

∂ti
−

r
∑

i=1

∂2

∂t2i
.

Similarly to obtain (3.4), we have

(4.5) ∆m+1G+ c0∆
mG+ · · ·+ cm∆G = 0

for some constants c0, c1, . . . , cm.
Quite similarly as in [1], we get

(4.6) G =
G0(t)

q1/2
,∆G =

G1(t)

q(1/2)+3
, . . . ,∆jG =

Gj(t)

q(1/2)+3j
, j = 0, 1, 2, . . . ,

where Gj(t) is a polynomial in t = (t1, t2, . . . , tr) with functions in s as coef-
ficients and degGj(t) ≤ 1 + 4j. As before, if (4.5) holds, there exist no other
cases but

∆G = 0.
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If we follow along the argument in [1] with harmonic Gauss map, we obtain M
is part of an (r + 1)-plane. �
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