• Title/Summary/Keyword: harmonic numbers

Search Result 62, Processing Time 0.026 seconds

APPLICATIONS OF CLASS NUMBERS AND BERNOULLI NUMBERS TO HARMONIC TYPE SUMS

  • Goral, Haydar;Sertbas, Doga Can
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1463-1481
    • /
    • 2021
  • Divisibility properties of harmonic numbers by a prime number p have been a recurrent topic. However, finding the exact p-adic orders of them is not easy. Using class numbers of number fields and Bernoulli numbers, we compute the exact p-adic orders of harmonic type sums. Moreover, we obtain an asymptotic formula for generalized harmonic numbers whose p-adic orders are exactly one.

ON THE p-ADIC VALUATION OF GENERALIZED HARMONIC NUMBERS

  • Cagatay Altuntas
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.933-955
    • /
    • 2023
  • For any prime number p, let J(p) be the set of positive integers n such that the numerator of the nth harmonic number in the lowest terms is divisible by this prime number p. We consider an extension of this set to the generalized harmonic numbers, which are a natural extension of the harmonic numbers. Then, we present an upper bound for the number of elements in this set. Moreover, we state an explicit condition to show the finiteness of our set, together with relations to Bernoulli and Euler numbers.

EULER SUMS OF GENERALIZED HYPERHARMONIC NUMBERS

  • Xu, Ce
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1207-1220
    • /
    • 2018
  • The generalized hyperharmonic numbers $h^{(m)}_n(k)$ are defined by means of the multiple harmonic numbers. We show that the hyperharmonic numbers $h^{(m)}_n(k)$ satisfy certain recurrence relation which allow us to write them in terms of classical harmonic numbers. Moreover, we prove that the Euler-type sums with hyperharmonic numbers: $$S(k,m;p):=\sum\limits_{n=1}^{{\infty}}\frac{h^{(m)}_n(k)}{n^p}(p{\geq}m+1,\;k=1,2,3)$$ can be expressed as a rational linear combination of products of Riemann zeta values and harmonic numbers. This is an extension of the results of Dil [10] and $Mez{\ddot{o}}$ [19]. Some interesting new consequences and illustrative examples are considered.

LOG-SINE AND LOG-COSINE INTEGRALS

  • Choi, Junesang
    • Honam Mathematical Journal
    • /
    • v.35 no.2
    • /
    • pp.137-146
    • /
    • 2013
  • Motivated essentially by their potential for applications in a wide range of mathematical and physical problems, the log-sine and log-cosine integrals have been evaluated, in the existing literature on the subject, in many different ways. The main object of this paper is to present explicit evaluations of some families of log-sine and log-cosine integrals by making use of the familiar Beta function.

ON CONGRUENCES INVOLVING THE GENERALIZED CATALAN NUMBERS AND HARMONIC NUMBERS

  • Koparal, Sibel;Omur, Nese
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.649-658
    • /
    • 2019
  • In this paper, we prove some congruences involving the generalized Catalan numbers and harmonic numbers modulo $p^2$, one of which is $$\sum\limits_{k=1}^{p-1}k^2B_{p,k}B_{p,k-d}{\equiv}4(-1)^d\{{\frac{1}{3}}d(2d^2+1)(4pH_d-1)-p\({\frac{26}{9}}d^3+{\frac{4}{3}}d^2+{\frac{7}{9}}d+{\frac{1}{2}}\)\}\;(mod\;p^2)$$, where a prime number p > 3 and $1{\leq}d{\leq}p$.

ON THE DENOMINATORS OF 𝜀-HARMONIC NUMBERS

  • Wu, Bing-Ling;Yan, Xiao-Hui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1383-1392
    • /
    • 2020
  • Let Hn be the n-th harmonic number and let νn be its denominator. Shiu proved that there are infinitely many positive integers n with νn = νn+1. Recently, Wu and Chen proved that the set of positive integers n with νn = νn+1 has density one. They also proved that the same result is true for the denominators of alternating harmonic numbers. In this paper, we prove that the result is true for the denominators of 𝜀-harmonic numbers, where 𝜀 = {𝜀i}i=1 is a pure recurring sequence with 𝜀i ∈ {-1, 1}.

CERTAIN FORMULAS INVOLVING EULERIAN NUMBERS

  • Choi, Junesang
    • Honam Mathematical Journal
    • /
    • v.35 no.3
    • /
    • pp.373-379
    • /
    • 2013
  • In contrast with numerous identities involving the binomial coefficients and the Stirling numbers of the first and second kinds, a few identities involving the Eulerian numbers have been known. The objective of this note is to present certain interesting and (presumably) new identities involving the Eulerian numbers by mainly making use of Worpitzky's identity.

NOTE ON STIRLING POLYNOMIALS

  • Choi, Junesang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.591-599
    • /
    • 2013
  • A large number of sequences of polynomials and numbers have arisen in mathematics. Some of them, for example, Bernoulli polynomials and numbers, have been investigated deeply and widely. Here we aim at presenting certain interesting and (potentially) useful identities involving mainly in the second-order Eulerian numbers and Stirling polynomials, which seem to have not been given so much attention.