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APPLICATIONS OF CLASS NUMBERS AND BERNOULLI

NUMBERS TO HARMONIC TYPE SUMS

Haydar Göral and Doğa Can Sertbaş

Abstract. Divisibility properties of harmonic numbers by a prime num-

ber p have been a recurrent topic. However, finding the exact p-adic
orders of them is not easy. Using class numbers of number fields and

Bernoulli numbers, we compute the exact p-adic orders of harmonic type
sums. Moreover, we obtain an asymptotic formula for generalized har-

monic numbers whose p-adic orders are exactly one.

1. Introduction

Here we study the exact p-adic order of harmonic numbers via class numbers
of some number fields and Bernoulli numbers. There are many results concern-
ing the p-adic orders of harmonic numbers. However, most of them provide
a p-adic lower bound for such numbers, as it is indeed hard to find the exact
p-adic orders of these numbers. In this note, we find the exact p-adic orders of
some generalized harmonic type sums using the properties of class numbers of
certain number fields and Bernoulli numbers.

Let K be a field and OK be its ring of integers. There is a positive integer
h(K) which is called the class number of K, and it is related to how OK is
far from being a principal ideal domain. In fact h(K) = 1 if and only if OK
is a principal ideal domain. The number h(K) is related to the Dedekind zeta
function of K and also some L-functions. For some particular number fields,
there are some exact formulas for h(K). For instance, if K = Q(

√
−p) where

p > 3 is a prime number which is congruent to 3 modulo 4, then by [9, Chapters
1 & 6] we know that

h(K) =
1

(2− ( 2
p ))

∑
m< p

2

(
m

p

)
,

Received December 15, 2020; Accepted April 6, 2021.
2010 Mathematics Subject Classification. Primary 11B83, 11B68, 5A10.
Key words and phrases. Harmonic numbers, Bernoulli numbers, regular primes, class

number.

©2021 Korean Mathematical Society

1463
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where
( ·
p

)
is the Legendre symbol. Harmonic numbers are defined by the terms

of the sequence of partial sums of the harmonic series, namely

hn =

n∑
k=1

1

k

for n ≥ 1. The order of growth of harmonic numbers is well-known, precisely
we have

hn ∼ log n+ γ +
1

2n
−
∞∑
k=1

B2k

2kn2k
(1.1)

= log n+ γ +
1

2n
− 1

12n2
+

1

120n4
− · · ·

as n tends to infinity, where γ is Euler’s constant and Bm is the mth Bernoulli
number, and these numbers are defined via the coefficients of the generating
function

x

ex − 1
=

∞∑
m=0

Bm
m!

xm.

Here are some Bernoulli numbers: B0 = 1, B1 = − 1
2 , B2 = 1

6 , B3 = 0 and

B4 = − 1
30 . Moreover, one has that B2n+1 = 0 for n ≥ 1. The von Staudt-

Clausen theorem states that for an even integer m ≥ 2, we have

Bm = Am −
∑
p−1|m

1

p

for some Am ∈ Z (see for instance [18, Theorem 3, Chapter 15]). Therefore for
an even integer m, the denominator of Bm is the product∏

p−1|m

p.

For more on Bernoulli numbers, polynomials and some explicit formulas, we
refer the reader to [20]. Given an odd prime p, Babbage’s result [2] states that
hp−1 ≡ 0 (mod p). Besides, for p ≥ 5 Wolstenholme [30] obtained that

hp−1 ≡ 0
(
mod p2

)
.(1.2)

Wolstenholme also showed that

(1.3) 1 +
1

22
+ · · ·+ 1

(p− 1)2
≡ 0 (mod p) ,

where p ≥ 5 is a prime. For a comprehensive survey on Wolstenholme’s theo-
rem, the reader may consult [21].

The nth generalized harmonic number of order s is defined as

H(s)
n =

n∑
k=1

1

ks
,(1.4)
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which is a partial sum of the Riemann Zeta function ζ(s) defined as

ζ(s) =

∞∑
n=1

1

ns

for s > 1. There are also Wolstenholme’s type congruences for generalized
harmonic numbers, for instance, it was proved in [11] that if p is a prime with
p− 1 - s, then one has

(1.5) H
(s)
p−1 ≡ 0 (mod p) .

Observe that congruence (1.5) generalizes congruence (1.3).
The other generalization of harmonic numbers is hyperharmonic numbers.

They first occurred in the book of Conway and Guy [8]: the nth hyperharmonic
number of order r is defined recursively by

h(r)
n :=

n∑
k=1

h
(r−1)
k , r ≥ 2,

where h
(1)
n = hn as the initial case. By [8], h

(r)
n can be computed in terms of

binomial coefficients and harmonic numbers

h(r)
n =

(
n+ r − 1

r − 1

)
(hn+r−1 − hr−1).

There is no harmonic number which is an integer except 1 [28]. Extend-
ing [28], the authors [14] proved that almost all hyperharmonic numbers are
not integers. This gives an almost positive answer to Mező’s conjecture [22].
Moreover, this idea was further generalized in [1]. However, Mező’s conjecture
is false and it was refuted by the second author [24]. Numerous p-adic order
calculations for hyperharmonic numbers can be found in [15].

Generalized hyperharmonic numbers [10] are defined by

H(s,r)
n :=

n∑
k=1

H
(s,r−1)
k ,

where H
(s,1)
n = H

(s)
n and r ≥ 2. Note that generalized hyperharmonic numbers

extend both h
(r)
n and H

(s)
n at the same time. In [10], a combinatorial identity

was given for generalized hyperharmonic numbers

(1.6) H(s,r)
n =

n∑
j=1

(
n− j + r − 1

r − 1

)
1

js
,

and this was generalized to all hypersequences in [16]. We define the p-adic
order of an integer as follows: for a ∈ Z we denote

νp(a) :=

{
m if pm ‖ a and a 6= 0,
∞ if a = 0,
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as the p-adic order of a. Here pm ‖ a means pm | a but pm+1 - a. We extend
the p-adic order to a rational number q = a/b ∈ Q by νp(q) = νp(a) − νp(b)
where a, b ∈ Z. Now, we focus on the divisibility properties of harmonic type
sums via Bernoulli numbers. Note that congruence (1.5) means that the p-adic

order of H
(s)
p−1 is at least 1, and congruence (1.2) says that the p-adic order of

hp−1 is at least 2 for p ≥ 5. In general, it is very hard to compute the exact p-
adic order of harmonic numbers. To illustrate, the only known primes p where
the p-adic order of hp−1 is equal to 3 are 16843 and 2124679, which are in fact
Wolstenholme primes. In this note, we find the exact p-adic order for a large
class of harmonic type sums. Following the literature, given a prime p and a
positive even integer m, we say that the tuple (p,m) is a regular pair if p does
not divide Bm. A prime p is called regular if the tuple (p,m) is a regular pair
for every even m ≤ p − 3. Equivalently, a prime p is called regular if p does
not divide the class number of the cyclotomic field Q(e2πi/p). This equivalence
was proved by Kummer. He also proved Fermat’s Last Theorem for a prime
exponent which is regular. Unfortunately, the infinitude of regular primes is not
known and there are infinitely many irregular primes where the smallest one is
37. Next, we state our results. In our first theorem, we obtain an asymptotic
formula for the number of positive integers s up to a given real number x, for

which the corresponding p-adic valuation of H
(s)
p−1 is exactly 1. We also infer

that the density of such numbers is positive. Note that the regularity of p
affects the density.

Theorem 1.1. Let p ≥ 5 be a prime number and x ∈ R>0. Define

Vp(x) :=
∣∣∣{s ≤ x νp

(
H

(s)
p−1

)
= 1
}∣∣∣ .(1.7)

Then, there exists an effectively computable constant cp ∈
(
0, 1

2

)
, depending

only on p, such that

Vp(x) = cpx+Op (1) .

Moreover, if p is a regular prime, then

cp =
p− 1

2p
.

Furthermore, if p is an irregular prime, then more than the half of the positive
integers s satisfy the inequality

νp

(
H

(s)
p−1

)
> 1.

For instance, if the prime number p satisfies 5 ≤ p < 37, then we know that
p is regular. Therefore,

cp =
p− 1

2p
.
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However, when p = 37, we compute that

c37 =
17

37
<
p− 1

2p
.

Our second theorem generalizes the corresponding result of [27], and this
theorem will be used several times in the proof of our other results. Note that
if we take s ≤ p−3, then we obtain the corresponding results given by Glaisher
[13] and Sun [27]. Here, we extend the range of s.

Theorem 1.2. Let p > 3 be a prime number and s a positive integer. Assume
that s is even, s′ ≡ s (mod p(p− 1)) where 0 ≤ s′ < p(p − 1) and put a =⌈
s′

p−1

⌉
. If p− 1 does not divide s, then

H
(s)
p−1 ≡

s

s+ a
pBap−(s′+a)

(
mod p2

)
.(1.8)

Moreover, if s > 1 is odd, p − 1 - s + 1, s′′ ≡ s
(
mod p2(p− 1)

)
where

0 ≤ s′′ < p2(p− 1) and b =
⌈
s′′+1
p−1

⌉
, then

H
(s)
p−1 ≡ −

s(s+ 1)

2(b+ s+ 1)
p2Bbp−(b+s′′+1)

(
mod p3

)
.(1.9)

Using the class number of certain imaginary quadratic number fields, we can
compute the exact p-adic order of some generalized harmonic numbers which
is given in the following theorem.

Theorem 1.3. Let p ≥ 5 be a prime number with p ≡ 3 (mod 4) and s ≥ 1 a
positive integer.

(1) If s is of the form (kp + a− 1
2 )(p− 1)− 1 where k ≥ 0 and a ≥ 1 are

integers such that p - 2a+ 1, then νp

(
H

(s)
p−1

)
= 1.

(2) If s = (`p2 + b− 1
2 )(p− 1)− 2 where ` ≥ 0 and b ≥ 1 are integers such

that p - 4b2 + 8b+ 3, then νp

(
H

(s)
p−1

)
= 2.

To illustrate Theorem 1.3, we provide some examples by SageMath [23]
which can be found in Table 1.

According to Table 1, note that the form of s given in Theorem 1.3 holds for

the cases (p, s) ∈ {(7, 1), (7, 2), (7, 8), (11, 3), (11, 4)}. Also to get νp

(
H

(s)
p−1

)
∈

{1, 2}, it is not necessary to take s of the form given in Theorem 1.3, as we see for
(p, s) ∈ {(7, 3), (7, 4)}. Moreover, the conditions p - 2a+1 and p - 4b2+8b+3 are
necessary for Theorem 1.3, which can be observed in the cases (p, s) = (7, 14)
and (p, s) = (7, 7), respectively.
Short outline of the paper : In Section 2, we will provide the proofs of Theorems
1.1-1.3 together with two corollaries related to generalized harmonic numbers.
In Section 3, we will deal with generalized hyperharmonic numbers and we
extend Theorem 1.3 to these numbers. In the same section, we will also prove
some other corollaries related to generalized hyperharmonic numbers.
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Table 1. The values and the corresponding p-adic valuations

of H
(s)
p−1 for the given values of p and s.

p s H
(s)
p−1 νp

(
H

(s)
p−1

)
7 1 49/20 2
7 2 5369/3600 1
7 3 28567/24000 2
7 4 14011361/12960000 1
7 6 47464376609/46656000000 0
7 7 940908897061/933120000000 3
7 8 168646392872321/167961600000000 1
7 14 7836896375476844489939489/7836416409600000000000000 2
11 3 19164113947/16003008000 2
11 4 43635917056897/40327580160000 1

2. Generalized harmonic numbers

Suppose that p ≥ 5 is a fixed prime number. In order to compute the con-
stant cp given in Theorem 1.1 effectively, we will need the number of elements
in the set

R(p) := {2 ≤ ` < p− 1 | νp (B`) = 0} .(2.1)

Note that the cardinality of this set is

|R(p)| ≤ p− 3

2
(2.2)

as B` = 0 for any odd ` > 1. Also, this cardinality is closely related to the
index of irregularity of p which is defined as

i(p) = |{2 ≤ i < p− 1 | i is even and νp (Bi) ≥ 1}| .

There are several theoretical and computational results on the bounds and the
exact values of the index of irregularity i(p) for a given prime p > 3 and we
refer the reader to [3–6, 17, 19, 25, 26, 29] for these results. To give a closed
formula for the mentioned constant cp, we will use the following lemma.

Lemma 2.1. Let p ≥ 5 be a prime number and R(p) be as in (2.1). Define

R′(p) := {2 ≤ `′ < p(p− 1) | νp (B`′) = 0} .(2.3)

Then, we have |R′(p)| = (p− 1) · |R(p)| .

Proof. Observe that R′(p) does not contain any odd integer, as B`′ = 0 for
any odd `′ > 1 (see [18, Proposition 15.1.1]). So, take any even positive integer
`′ ∈ [2, p(p − 1)) and assume that ` ≡ `′ (mod p− 1) for some 0 ≤ ` < p − 1.
By the von Staudt-Clausen theorem in [18, Theorem 3, Chapter 15], we know
that νp (B`′) = −1 if and only if p− 1 | `′. Therefore, none of the multiples of
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p−1 in [2, p(p−1)) is an element of R′(p). Also, since `′ is even, by Kummer’s
congruence (see for instance [18, Theorem 5, Chapter 15]) we have that

B`′ ≡
`′

`
B` (mod p)

whenever p − 1 - `′. Note that p - `, as ` < p − 1. Hence, the condition
νp (B`′) = 0 is equivalent to νp (`′) = νp (B`) = 0. This indicates that `′ ∈ R′(p)
holds if and only if p - `′ and ` ∈ R(p). In other words, any element `′ of R′(p)
satisfies the congruences

`′ ≡ 1, 2, . . . , p− 1 (mod p) ,(2.4)

`′ ≡ ` (mod p− 1)(2.5)

for some ` ∈ R(p). Combining these solutions with the Chinese remainder the-
orem yields that there are (p − 1) · |R(p)| possible common solutions modulo
p(p− 1) for congruences (2.4) and (2.5). If we take the corresponding repre-
sentatives in [2, p(p− 1)), we conclude that |R′(p)| = (p− 1)|R(p)|. �

Using the previous lemma, now we can give the corresponding estimation
on Vp(x).

2.1. Proof of Theorem 1.1

Let p ≥ 5 be a prime number and s ∈ Z≥0. First of all, we emphasize

that for any t ∈ Z>0, the condition νp

(
H

(s+t·ϕ(p2))
p−1

)
= 1 is equivalent to

νp

(
H

(s)
p−1

)
= 1. To see this fact, observe that

H
(s+t·ϕ(p2))
p−1 =

p−1∑
i=1

1

is+t·ϕ(p2)
≡

p−1∑
i=1

1

is
= H

(s)
p−1

(
mod p2

)
(2.6)

by Euler’s Theorem. Now, define

Vp :=
{

0 ≤ s < ϕ(p2) | νp
(
H

(s)
p−1

)
= 1
}

(2.7)

and let x be any positive real number. To estimate Vp(x) which is defined in
(1.7), we divide the interval [0, x] as

[0, x] =

k−1⋃
j=0

[j · ϕ(p2), (j + 1) · ϕ(p2)) ∪ [k · ϕ(p2), x]

for some k ∈ Z≥0 where x < (k + 1) · ϕ(p2). By congruence (2.6), note that

each interval of the form [j · ϕ(p2), (j + 1) · ϕ(p2)) contains |Vp| many s values

for which νp

(
H

(s)
p−1

)
= 1. Also, notice that the interval [k · ϕ(p2), x] contains

at most ϕ(p2) many integers. Thus, we have

Vp(x) =
∣∣Vp∣∣ · k +O

(
ϕ(p2)

)
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=
∣∣Vp∣∣ · ⌊ x

ϕ(p2)

⌋
+Op (1)

=
∣∣Vp∣∣ · x

p(p− 1)
+Op (1)

= cpx+Op (1) ,

where

cp =

∣∣Vp∣∣
p(p− 1)

.

From now on, our aim is to find the number of elements in Vp in terms of |R(p)|
where R(p) is defined in (2.1).

Take any s ∈ Vp. Observe that

H
(s)
p−1 =

p−1∑
i=1

i−s ≡
p−1∑
i=1

iϕ(p2)−s (mod p2
)
,(2.8)

where 0 < ϕ(p2) − s ≤ ϕ(p2). By Faulhaber’s formula (see [18, Theorem 1,
Chapter 15]), we know that for any integer m > 0, equations

p−1∑
i=1

im =
1

m+ 1

m+1∑
j=1

(
m+ 1

j

)
Bm+1−jp

j

= pBm +
m

2
p2Bm−1 +

m(m− 1)

6
p3Bm−2 +

m+1∑
j=4

(
m+ 1

j

)
Bm+1−jp

j

hold. So, applying Faulhaber’s formula to congruence (2.8), we get that

H
(s)
p−1 ≡ pBϕ(p2)−s +

ϕ(p2)− s
2

p2Bϕ(p2)−s−1

(
mod p2

)
(2.9)

as p > 3 and νp (Bn) ≥ −1 for any integer n ≥ 0, by the von Staudt-Clausen
theorem. Now, we will separate our cases with respect to the parity of s. First,
take an odd s. Note that ϕ(p2)−s is also odd, as p−1 | ϕ(p2). If ϕ(p2)−s = 1,
then congruence (2.9) becomes

H
(s)
p−1 ≡ pB1 +

p2

2
B0 =

p(p− 1)

2

(
mod p2

)
which indicates that νp

(
H

(s)
p−1

)
= 1, as B0 = 1 and B1 = − 1

2 . So, suppose

ϕ(p2)− s > 1. In that case Bϕ(p2)−s = 0, and thus

H
(s)
p−1 ≡

ϕ(p2)− s
2

p2Bϕ(p2)−s−1

(
mod p2

)
(2.10)

by congruence (2.9). This yields that νp

(
H

(s)
p−1

)
= 1 if and only if

νp
(
ϕ(p2)− s

)
= 0 and νp

(
Bϕ(p2)−s−1

)
= −1
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as p > 2. By the von Staudt-Clausen theorem, we know that the latter con-
dition is equivalent to p − 1 | ϕ(p2) − s − 1, that is s + 1 ≡ 0 (mod p− 1) .
Besides, we need to have p - s in order to get νp

(
ϕ(p2)− s

)
= 0. Combining

these two facts gives us the following necessary and sufficient conditions for s
being in Vp:

s+ 1 ≡ 0 (mod p− 1) ,(2.11)

s+ 1 ≡ 0, 2, 3, . . . , p− 1 (mod p) .(2.12)

This implies that there are (p − 1) solutions modulo p(p − 1) by the Chinese
remainder theorem. Note that the case ϕ(p2) − s = 1 is covered by these
solutions, as this is satisfied when p(p−1) | s+1. Thus, we conclude that there
are (p− 1) many possible odd values of s ∈ Vp.

Next, suppose that s ∈ Vp is even. Note that the case s = 0 is impossible,

as this yields that H
(s)
p−1 = p − 1. This indicates that 0 < ϕ(p2) − s < ϕ(p2)

where ϕ(p2)− s is also even, as p− 1 | ϕ(p2). Moreover, since congruence (2.9)
holds for s, we see that

H
(s)
p−1 ≡ pBϕ(p2)−s

(
mod p2

)
(2.13)

as B1 = − 1
2 and p > 2. Hence, νp

(
H

(s)
p−1

)
= 1 is satisfied if and only if

νp
(
Bϕ(p2)−s

)
= 0. By the definition of R′(p) which is given in (2.3), we deduce

that the latter fact is also equivalent to ϕ(p2)− s ∈ R′(p), as 0 < ϕ(p2)− s <
p(p− 1) and ϕ(p2)− s is even. Thus, there are |R′(p)| = (p− 1) · |R(p)| many
possible even values of s in Vp. Combining this with the possible odd values in

Vp, we obtain that∣∣Vp∣∣ = (p− 1) + |R′(p)| = (p− 1)(|R(p)|+ 1) > 0.(2.14)

Recall that cp =
|Vp|
p(p−1) . By (2.2) and (2.14), we see that

0 < cp =

∣∣Vp∣∣
p(p− 1)

=
(p− 1)(|R(p)|+ 1)

p(p− 1)
=
|R(p)|+ 1

p
≤ p− 1

2p
<

1

2
.(2.15)

If we take a regular prime p, then we know that all even numbers less than
p − 1 are in the set R(p). In other words, |R(p)| reaches its maximum value
and it is equal to p−3

2 . Thus, we conclude by (2.15) that cp = p−1
2p for a regular

prime p ≥ 5.

Finally, recall by (1.5) that νp

(
H

(s)
p−1

)
≥ 1 whenever p − 1 - s. Also, if

p− 1 | s, then we have

H
(s)
p−1 =

p−1∑
i=1

1

is
≡

p−1∑
i=1

1 (mod p) .
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This indicates that νp

(
H

(s)
p−1

)
= 0 if and only if p− 1 | s. Hence, the density is∣∣∣{s ≤ x νp

(
H

(s)
p−1

)
= 0
}∣∣∣

x
∼ 1

p− 1

as x tends to infinity. Thus, the density of the positive integers s for which

νp

(
H

(s)
p−1

)
≥ 2 is

1−
(
cp +

1

p− 1

)
= 1− |R(p)|+ 1

p
− 1

p− 1
(2.16)

by (2.15). For any irregular prime p, we know that

|R(p)| ≤ p− 3

2
− 1 =

p− 5

2

by inequality (2.2). Assembling this and (2.16), we deduce that

1−
(
cp +

1

p− 1

)
≥ 1−

(
p− 3

2p
+

1

p− 1

)
>

1

2

as p > 3. In other words, more than the half of the positive integers satisfy the

inequality νp

(
H

(s)
p−1

)
> 1, when p is irregular. �

Example 2.2. As we mentioned in the introduction, take the first irregular
prime p = 37. In that case, the set

R(p) = R(37) = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 34} .

Therefore, we have

|R(37)| = 16 =
p− 5

2
<
p− 3

2
,

and thus c37 = 17
37 ≈ 0.459 . . ., as 32 /∈ R(37).

2.2. Proof of Theorem 1.2

We will follow the same approach that was given in [27, Theorem 5.1]. By
Faulhaber’s formula given in [18, Theorem 1, Chapter 15], we see that for any
m ∈ Z>0,

p−1∑
i=1

im = pBm +
m

2
p2Bm−1 +

m(m− 1)

6
p3Bm−2

+

m+1∑
j=4

(
m+ 1

j

)
Bm+1−jp

j .

(2.17)

By the von Staudt-Clausen theorem (see also [18, Proposition 15.2.1]), we infer
that νp (Bn) ≥ −1 for any n ∈ N. Moreover, as mentioned in the introduction,
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we have Bn = 0, if n > 1 is odd. Combining these two facts and equation
(2.17), we obtain that

p−1∑
i=1

im ≡
{

pBm
(
mod p2

)
if m is even,

m
2 p

2Bm−1

(
mod p3

)
if m > 1 is odd

(2.18)

as B1 = − 1
2 . Let s = s′ + kϕ(p2) for some k ∈ Z≥0. Observe that

H
(s)
p−1 =

p−1∑
i=1

1

is
=

p−1∑
i=1

(
1

i

)s′+kϕ(p2)

≡
p−1∑
i=1

1

is′
(
mod p2

)
≡

p−1∑
i=1

iϕ(p2)−s′ (mod p2
)

(2.19)

by Euler’s Theorem. If we take an even s, then we derive that

H
(s)
p−1 ≡ pBϕ(p2)−s′

(
mod p2

)
(2.20)

using congruence (2.18). Notice that s ≡ s′ (mod p− 1). By the divisibility
assumption on s, we get that p−1 - s′. By Kummer’s congruences on Bernoulli
numbers, we deduce that

Bϕ(p2)−s′ = B(p−a)(p−1)+a(p−1)−s′

≡ (p− a)(p− 1) + a(p− 1)− s′

a(p− 1)− s′
Ba(p−1)−s′ (mod p)

≡ a+ ap− a− s′

−a− s′
Ba(p−1)−s′ ≡

s′

s′ + a
Bap−a−s′ (mod p) ,(2.21)

where a =
⌈
s′

p−1

⌉
. By the definition of a, we know that a ≥ s′

p−1 > a− 1 which

implies that a(p−1)−s′ ≥ 0. Also we have (a−1)(p−1)−s′ < 0. This indicates
that a(p − 1) − s′ < p − 1. Recall that p − 1 - s′. This leads to the fact that
0 < a(p − 1) − s′ < p. Also, note that the congruence s′ ≡ s (mod p(p− 1))
yields that s′ ≡ s (mod p). Combining this with (2.20) and (2.21), we get that

H
(s)
p−1 ≡

s

s+ a
pBap−(s′+a)

(
mod p2

)
,

which is congruence (1.8).
For the second part of the theorem, assume that s > 1 is odd. Similar to

the first case, we also obtain that

H
(s)
p−1 ≡

p−1∑
i=1

iϕ(p3)−s′′ (mod p3
)
.(2.22)

Recall that p − 1 - s + 1 and s′′ ≡ s
(
mod p2(p− 1)

)
. Therefore, we have

p − 1 - s′′ + 1. Note that ϕ(p3)− s′′ > 0, as 0 ≤ s′′ < p2(p − 1). Also,
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ϕ(p3)− s′′ = 1 contradicts p−1 - s′′+1. Combining this fact with congruences
(2.18) and (2.22), we get that

H
(s)
p−1 ≡

ϕ(p3)− s′′

2
p2Bϕ(p3)−s′′−1

(
mod p3

)
(2.23)

as s′′ is odd and ϕ(p3)− s′′ > 1. Again by Kummer’s congruence,

Bϕ(p3)−s′′−1 = B(p2−b)(p−1)+b(p−1)−s′′−1

≡ (p2 − b)(p− 1) + b(p− 1)− s′′ − 1

b(p− 1)− s′′ − 1
Bb(p−1)−s′′−1 (mod p)

≡ s′′ + 1

b+ s′′ + 1
Bbp−b−s′′−1 (mod p) ,(2.24)

where b =
⌈
s′′+1
p−1

⌉
. Similar to the first part, observe that

0 < b(p− 1)− s′′ − 1 < p− 1,

since p − 1 - s′′ + 1. As s′′ ≡ s
(
mod p2(p− 1)

)
, we have s′′ ≡ s (mod p) .

Therefore, we derive that

ϕ(p3)− s′′

2
Bϕ(p3)−s′′−1 ≡

p3 − p2 − s′′

2
· s′′ + 1

b+ s′′ + 1
Bbp−b−s′′−1 (mod p)

≡ − s(s+ 1)

2(b+ s+ 1)
Bbp−b−s′′−1 (mod p) .

Hence, we obtain that

H
(s)
p−1 ≡

ϕ(p3)− s′′

2
p2Bϕ(p3)−s′′−1 ≡ −

s(s+ 1)

2(b+ s+ 1)
p2Bbp−(b+s′′+1)

(
mod p3

)
by congruence (2.23). �

Before proving Theorem 1.3, we need two corollaries which are immediate
consequences of Theorem 1.2.

Corollary 2.3. Let p ≥ 5 be a prime. Assume that s is even,

s′ ≡ s (mod p(p− 1)) ,

where 0 ≤ s′ < p(p− 1) and define a′ =
⌈
s′

p−1

⌉
. If p− 1 and p do not divide s

and (p, a′(p− 1)− s′) is a regular pair then νp

(
H

(s)
p−1

)
= 1. In particular, if p

is a regular prime with p - s and p− 1 - s, then νp

(
H

(s)
p−1

)
= 1.

Proof. Since (p, a′(p− 1)− s′) is a regular pair, we know that p - Ba′(p−1)−s′ .
As a consequence of a theorem related to Bernoulli numbers given in [12], we
obtain that if p divides the integer m ≥ 0, then p also divides the numerator
of Bm. Hence, we get that p - a′(p − 1) − s′. This implies that p - s′ + a′.
Moreover, the congruence s′ ≡ s (mod p(p− 1)) yields that s′ ≡ s (mod p)
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and s′ ≡ s (mod p− 1). Thus p - s+ a′. Also since p - s and p− 1 - s, one has
that

νp

(
s

s+ a′
Ba′(p−1)−s′

)
= 0

by the von Staudt-Clausen theorem, as s′ ≡ s (mod p− 1). This in turn
implies that

νp

(
H

(s)
p−1

)
= 1

by Theorem 1.2. As 0 < a′(p− 1)− s′ < p− 1, one can also deduce the same
result by the definition of a regular prime when p− 1 - s. �

Corollary 2.4. Let p ≥ 5 be a prime. Suppose that s is odd,

s′′ ≡ s
(
mod p2(p− 1)

)
,

where 0 ≤ s′′ < p2(p − 1) and b′ =
⌈
s′′+1
p−1

⌉
. If p - s(s + 1), p − 1 - s + 1 and

(p, b′(p − 1) − s′′ − 1) is a regular pair, then νp

(
H

(s)
p−1

)
= 2. In particular, if

p, p− 1 - s+ 1 and p is a regular prime with p - s, then the same result follows.

Proof. First of all, note that if s = 1, then νp

(
H

(s)
p−1

)
= 2 by congruence

(1.2). So, take s > 1. As the conditions of Theorem 1.2 are satisfied, we
can use this result to obtain the p-adic orders of corresponding generalized
harmonic numbers. Since (p, b′(p − 1) − s′′ − 1) is a regular pair, we deduce
that p - b′(p−1)−s′′−1 by the properties of Bernoulli numbers [12]. Note that
s′′ ≡ s

(
mod p2(p− 1)

)
implies that p - b′(p−1)−s−1, which is also equivalent

to the fact that p - b′ + s+ 1. Recall that p - s(s+ 1). Combining all of these

facts leads to νp

(
H

(s)
p−1

)
= 2 by Theorem 1.2 and by a similar argument as in

the previous corollary. Also if p is regular with p - s and p, p − 1 - s + 1, then
the same result follows as 0 < b′(p − 1) − s′′ − 1 < p − 1 and each such pair
(p,m) is regular for m ≤ p− 3. �

Now, we are ready to prove our last theorem from the introduction.

2.3. Proof of Theorem 1.3(1)

Let p ≥ 5 be a prime with p ≡ 3 (mod 4). Let h(p) be the class number of
the quadratic imaginary field Q(

√
−p). Then, it is known that (see [9, Chapter

1 & 6])

(2.25) h(p) =
1

(2− ( 2
p ))

∑
m< p

2

(
m

p

)
,

where
( ·
p

)
is the Legendre symbol whose values can be −1, 0 and 1. Hence, we

have

1 ≤ h(p) < p/2 < p.
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In particular, we obtain that p does not divide h(p). Moreover, we know by [7]
that

h(p) ≡ −2B p+1
2

(mod p) .

By the previous argument, one sees that the p-adic order of B p+1
2

is 0. This

indicates that
(
p, p+1

2

)
is a regular pair for p ≡ 3 (mod 4) . So if s = (kp +

a − 1
2 )(p − 1) − 1 for some k ≥ 0 and a ≥ 1, then s ≡ − 2a+1

2 (mod p). As

p - 2a+ 1, we get that p - s. Let s′ = a(p − 1) − p+1
2 . Thus, we have that

s ≡ s′ (mod p(p− 1)) . Observe that s is even and

s′

p− 1
=

(
a− 1

2

)
(p− 1)− 1

p− 1
= a−

(
1

2
+

1

p− 1

)
.

Therefore a =
⌈
s′

p−1

⌉
, as 0 < 1

2 + 1
p−1 < 1 for p > 3. Note that s ≡ s′ ≡

−p+1
2 (mod p− 1), and since 0 < p+1

2 < p − 1 for p > 3, we derive that

p − 1 - s. As p+1
2 = a(p − 1) − s′ and

(
p, p+1

2

)
is a regular pair, by Corollary

2.3 we conclude that νp

(
H

(s)
p−1

)
= 1. �

2.4. Proof of Theorem 1.3(2)

First remind from the proof of Theorem 1.3(1) that
(
p, p+1

2

)
is a regular pair.

Take s of the form (`p2 +b− 1
2 )(p−1)−2 for some ` ≥ 0 and b ≥ 1. Recall that

s is odd and if s′′ = (b− 1
2 )(p− 1)− 2, then s′′ ≡ s

(
mod p2(p− 1)

)
. Similar

to the proof of Theorem 1.3(1), we see that s ≡ − 2b+3
2 (mod p) . Hence, we

get s+ 1 ≡ − 2b+1
2 (mod p) . As p - 4b2 + 8b+ 3 = (2b+ 1)(2b+ 3), we deduce

that p - s(s+ 1). Thus, we obtain that

s′′ + 1

p− 1
=

(
b− 1

2

)
(p− 1)− 1

p− 1
= b−

(
1

2
+

1

p− 1

)
.

Since p > 3, we derive that b =
⌈
s′′+1
p−1

⌉
as 0 < 1

2 + 1
p−1 < 1. Moreover, we have

s′′+ 1 = b(p− 1)− p+1
2 . Therefore, (p, b(p− 1)− s′′− 1) =

(
p, p+1

2

)
is a regular

pair. Furthermore, we observe that s + 1 ≡ s′′ + 1 ≡ −p+1
2 (mod p− 1). As

p > 3, we get that 0 < p+1
2 < p− 1. Thus p− 1 - s+ 1. Now by Corollary 2.4,

we conclude that νp

(
H

(s)
p−1

)
= 2. �

3. Generalized hyperharmonic numbers

The next corollary extends Theorem 1.3 to generalized hyperharmonic num-
bers.

Corollary 3.1. Let p ≥ 5 be a prime number with p ≡ 3 (mod 4) and s ≥ 1
a positive integer. If the conditions of Theorem 1.3(1) hold and r is of the
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form mp2 + 1 for some m ≥ 0, then the exact p-adic valuation of the gener-

alized hyperharmonic number H
(s,r)
p−1 is 1. Moreover, if r ≡ 1

(
mod p3

)
, then

νp

(
H

(s,r)
p−1

)
= 2 under the conditions on p and s given in Theorem 1.3(2).

Proof. Let r ≡ 1
(
mod p2

)
. Then, observe by [16, Proposition 2.1] that

H
(s,r)
p−1 =

p−1∑
j=1

(
p− 1− j + r − 1

r − 1

)
1

js

=

p−1∑
j=1

r(r + 1) · · · (r + (p− j − 2))

(p− j − 1)!
· 1

js

≡
p−1∑
j=1

1 · 2 · · · (p− j − 1)

(p− j − 1)!
· 1

js
≡

p−1∑
j=1

1

js
(
mod p2

)
.

Namely, H
(s,r)
p−1 ≡ H

(s)
p−1

(
mod p2

)
when r ≡ 1

(
mod p2

)
. As the conditions on

p and s given in Theorem 1.3(1) are satisfied, one has that νp

(
H

(s,r)
p−1

)
= 1.

Similarly, if r ≡ 1
(
mod p3

)
, then we deduce that

H
(s,r)
p−1 =

p−1∑
j=1

r(r + 1) · · · (r + (p− j − 2))

(p− j − 1)!
· 1

js
≡

p−1∑
j=1

1

js
(
mod p3

)
.

In that case νp

(
H

(s,r)
p−1

)
= 2, if the conditions of Theorem 1.3(2) are satisfied.

�

Recall by Table 1 that the conditions of Corollary 3.1 are satisfied when we
have (p, s) ∈ {(7, 8), (11, 3)}. So, if we take (p, s, r) = (7, 8, 99), then computa-
tions performed by SageMath [23] show that

H
(s,r)
p−1 = H

(8,99)
6 =

7353180000659238390827

83980800000000
and ν7

(
H

(8,99)
6

)
= 1,

which is also verified by the first part of Corollary 3.1. Similarly, choosing
(p, s, r) = (11, 3, 1332) leads to

H
(s,r)
p−1 = H

(3,1332)
10 =

33249262323596863627314636885227

889056000

and ν11

(
H

(3,1332)
10

)
= 2, as it is expected from the second part of Corollary

3.1.

Corollary 3.2. Let p ≥ 5 be a prime number, s > 2 be an even positive integer

and s0 ≡ s
(
mod p2(p− 1)

)
with 0 ≤ s0 < p(p − 1). Denote c =

⌈
s0
p−1

⌉
. If

p− 1 - s, p - s(s+ 1), (p, c(p− 1)− s0) is a regular pair and r ≡ 2
(
mod p3

)
,

then νp

(
H

(s,r)
p−1

)
= 2.
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Proof. Let r ≡ 2
(
mod p3

)
. Observe that(

p− 1− j + r − 1

r − 1

)
≡ 2 · 3 · · · (p− j)

(p− j − 1)!
≡ p− j

(
mod p3

)
.

So, we have

H
(s,r)
p−1 ≡

p−1∑
j=1

p− j
js

(
mod p3

)
= p

p−1∑
j=1

1

js
−
p−1∑
j=1

1

js−1
≡ pH(s)

p−1 −H
(s−1)
p−1

(
mod p3

)
.(3.1)

Notice that s0 ≡ s (mod p(p− 1)) . Since s − 1 > 1 is odd, c =
⌈
s0
p−1

⌉
=⌈

(s0−1)+1
p−1

⌉
and p− 1 does not divide (s− 1) + 1 = s, we obtain that

pH
(s)
p−1 ≡

s

s+ c
p2Bcp−(c+s0)

(
mod p3

)
,

H
(s−1)
p−1 ≡ − (s− 1)s

2(c+ s)
p2Bcp−(c+s0)

(
mod p3

)
by Theorem 1.2. Combining these equations, we get that

H
(s,r)
p−1 ≡ pH

(s)
p−1 −H

(s−1)
p−1 ≡ s(s+ 1)

2(c+ s)
p2Bc(p−1)−s0

(
mod p3

)
.(3.2)

Since (p, c(p− 1)− s0) is a regular pair, then p - Bc(p−1)−s0 which implies that
p - c + s0 by [12]. Besides, using the von Staudt-Clausen theorem, one infers
that

νp
(
Bc(p−1)−s0

)
= 0

as s0 ≡ s
(
mod p2(p− 1)

)
and p− 1 - s. Since s ≡ s0 (mod p) and p - s(s+ 1),

we conclude that νp

(
H

(s,r)
p−1

)
= 2. �

Corollary 3.3. Let p ≥ 5 be a prime number and s > 1 be an odd natural

number. Let s1 ≡ s (mod p(p− 1)) where 0 ≤ s1 < p(p− 1) and a =
⌈
s1−1
p−1

⌉
.

Assume that p - s − 1 and p − 1 does not divide s − 1 and s. Suppose also
that (p, a(p − 1) − (s1 − 1)) is a regular pair and r ≡ 2

(
mod p3

)
. Then

νp

(
H

(s,r)
p−1

)
= 1.

Proof. Suppose that r ≡ 2
(
mod p3

)
and s > 1 is odd. By congruence (3.1),

we know that

H
(s,r)
p−1 ≡ pH

(s)
p−1 −H

(s−1)
p−1

(
mod p3

)
.(3.3)

As p− 1 does not divide s, by congruence (1.5), one sees that

pH
(s)
p−1 ≡ 0

(
mod p2

)
.(3.4)
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Also, since s is odd and p− 1 - s− 1, by Theorem 1.2 again we get that

H
(s−1)
p−1 ≡ s− 1

s− 1 + a
pBap−(s1−1+a)

(
mod p2

)
,

where a =
⌈
s1−1
p−1

⌉
. Since the pair (p, ap − (s1 − 1 + a)) is regular, p -

Bap−(s1−1+a), and this in turn implies that p - ap − (s1 − 1 + a) by [12].
In addition, by the von Staudt-Clausen theorem, one obtains that

νp
(
Bap−(s1−1+a)

)
= νp

(
Ba(p−1)−(s1−1))

)
= 0,

since s1 ≡ s (mod p(p− 1)) and p − 1 does not divide s − 1. As p - s − 1, we

deduce that νp

(
H

(s−1)
p−1

)
= 1. Assembling this fact with congruences (3.3) and

(3.4), we conclude that νp

(
H

(s,r)
p−1

)
= 1. �

In order to give some examples for Corollary 3.2 and Corollary 3.3, we will
take (p, s, r) from {(5, 18, 252), (11, 4, 1333)} and {(7, 11, 688), (13, 3, 2199)}, re-
spectively. Thanks to SageMath [23], we can give their values and correspond-
ing p-adic valuations as follows:

• H(18,252)
4 =

7984054028443112578799425

2958148142320582656
, ν5

(
H

(18,252)
4

)
= 2.

• H(4,1333)
10 =

1517738162866000122460846014255115783

40327580160000
,

ν11

(
H

(4,1333)
10

)
= 2.

• H(11,688)
6 =

5910645956568900471078065582293

4534963200000000000
,

ν7

(
H

(11,688)
6

)
= 1.

• H(3,2199)
12 =

63657142156620503600078041643560231855171

426000072960
,

ν13

(
H

(3,2199)
12

)
= 1.

Final Remark. One can also give other conditions on p, s and r to obtain

νp

(
H

(s,r)
p−1

)
= 1 or νp

(
H

(s,r)
p−1

)
= 2.

We do not deal with each case separately. Also in some cases, we may not need
all of the conditions to prove such a result given in our corollaries (Corollary 3.2
and Corollary 3.3). For example, if we take s ≤ p−3 even and r ≡ 2

(
mod p3

)
for p ≥ 5, then automatically we have p − 1 - s and p - s(s + 1). In that case,
we get that

H
(s,r)
p−1 =

p2s

2
Bp−1−s

(
mod p3

)
by congruence (3.2). Thus, we conclude that νp

(
H

(s,r)
p−1

)
= 2, if (p, p − 1 − s)

is a regular pair. Also if 1 < s < p− 3 is odd, r ≡ 2
(
mod p3

)
and (p, p− s) is

a regular pair, then Corollary 3.3 follows, that is to say νp

(
H

(s,r)
p−1

)
= 1.
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invariants to four million, Math. Comp. 61 (1993), no. 203, 151–153. https://doi.org/
10.2307/2152942

[4] J. Buhler, R. Crandall, R. Ernvall, T. Metsänkylä, and M. A. Shokrollahi, Irregular
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[24] D. C. Sertbaş, Hyperharmonic integers exist, C. R. Math. Acad. Sci. Paris 358 (2020),
no. 11-12, 1179–1185. https://doi.org/10.5802/crmath.137

https://doi.org/10.2307/2152942
https://doi.org/10.2307/2152942
https://doi.org/10.1006/jsco.1999.1011
https://doi.org/10.2307/2153086
https://doi.org/10.1090/S0025-5718-2011-02461-0
https://doi.org/10.1007/BF02564567
https://doi.org/10.1007/978-1-4612-4072-3
https://doi.org/10.3906/mat-1603-4
https://doi.org/10.2307/2589252
https://doi.org/10.2307/2323915
https://doi.org/10.1016/j.jnt.2016.07.023
https://doi.org/10.1007/s10474-017-0766-7
https://doi.org/10.1142/S1793042118500628
https://doi.org/10.1090/mcom/3211
https://doi.org/10.1007/978-1-4757-2103-4
https://doi.org/10.1007/978-1-4757-2103-4
https://doi.org/10.2307/2005468
http://www.sagemath.org
https://doi.org/10.5802/crmath.137


CLASS NUMBERS, BERNOULLI NUMBERS AND HARMONIC SUMS 1481

[25] L. Skula, Index of irregularity of a prime, J. Reine Angew. Math. 315 (1980), 92–106.

https://doi.org/10.1515/crll.1980.315.92

[26] , The orders of solutions of the Kummer system of congruences, Trans. Amer.
Math. Soc. 343 (1994), no. 2, 587–607. https://doi.org/10.2307/2154733

[27] Z.-H. Sun, Congruences concerning Bernoulli numbers and Bernoulli polynomials, Dis-
crete Appl. Math. 105 (2000), no. 1-3, 193–223. https://doi.org/10.1016/S0166-

218X(00)00184-0

[28] L. Theisinger, Bemerkung über die harmonische Reihe, Monatsh. Math. Phys. 26 (1915),
no. 1, 132–134. https://doi.org/10.1007/BF01999444

[29] S. S. Wagstaff, Jr., The irregular primes to 125000, Math. Comp. 32 (1978), no. 142,

583–591. https://doi.org/10.2307/2006167
[30] J. Wolstenholme, On certain properties of prime numbers, Quart. J. Pure Appl. Math.

5 (1862), 35-9.

Haydar Göral
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