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ON THE p-ADIC VALUATION OF GENERALIZED

HARMONIC NUMBERS

Çağatay Altuntaş

Abstract. For any prime number p, let J(p) be the set of positive inte-
gers n such that the numerator of the nth harmonic number in the lowest

terms is divisible by this prime number p. We consider an extension of

this set to the generalized harmonic numbers, which are a natural exten-
sion of the harmonic numbers. Then, we present an upper bound for the

number of elements in this set. Moreover, we state an explicit condition

to show the finiteness of our set, together with relations to Bernoulli and
Euler numbers.

1. Introduction

The harmonic numbers are defined as the partial sums of the harmonic series.
We denote the nth harmonic number by

hn = 1 +
1

2
+ · · ·+ 1

n
.

These numbers have been studied in many aspects and we progress toward a
natural generalization of them.

In 1991, Eswarathasan and Levine [5] introduced a subset of positive integers
denoted by J(p) for any prime number p. The set J(p) consists of positive
integers n in which the numerator of the corresponding harmonic number hn

in the lowest terms is divisible by the prime number p. They conjectured that
the set is finite for any prime p. In particular, they computed the elements of
J(p) for primes p ≤ 7.

Later on, Boyd [3] worked on the set J(p) and computed its number of
elements for primes p < 550 except for p ∈ {83, 127, 397}.

Then, Sanna [19] showed for any prime p and x ≥ 1 that

|J(p) ∩ [1, x]| < 129p
2
3x0.765.
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Moreover, the upper bound was improved by Wu and Chen [22] to 3x
2
3+

1
25 log p .

However, it is not known whether J(p) is finite or not, so the conjecture is still
open.

Our main purpose in this note is to generalize the set J(p) to generalized
harmonic numbers. Then, we aim to give an upper bound for the number of
elements in the corresponding set. The nth generalized harmonic number of

order s, denoted by H
(s)
n , is defined as

H(s)
n :=

n∑
k=1

1

ks
.

Note that these numbers are the partial sums of the Riemann zeta function
ζ(s) for s > 1. Moreover, by the well known fact

ζ(2) =

∞∑
k=1

1

k2
=

π2

6
< 2,

we can conclude that the generalized harmonic numbers are not integers except
1.

Given a rational number a
b , we will write p | a

b to mean that p divides the
numerator of the number a

b in its lowest terms. Then, we define our general-
izations of J(p) as follows in Section 2. For any prime p and positive integer s,
we define

J(p, s) := {n ∈ N : p | H(s)
n } and J(ps, s) := {n ∈ N : ps | H(s)

n }.

Note that the sets are indeed a generalization of J(p) as when s = 1, one
has that

J(p, 1) = J(p).

The relation between these sets will be given in Proposition 2.3, and our at-
tention will be on the set J(p, s).

A generalization of J(p) was also given in [10] for hyperharmonic numbers.
They were defined in [4] recursively as

h(r)
n =

n∑
k=1

h
(r−1)
k

for r ≥ 2 such that h
(1)
n = hn. These numbers also come with numerous

combinatorial properties. For instance, they tend to be non-integer, as the
number of pairs (n, r) where the corresponding hyperharmonic number is non-
integer have the full asymptotic in the first quadrant [1,9]. However, it has been
recently shown that in fact there are infinitely many hyperharmonic integers
[20].

For the corresponding generalization of J(p), namely for the set

J (r)
p = {n ∈ N : h(r)

n ≡ 0 (mod p)},
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it was proven in some cases that the set is infinite contrary to the conjecture.
On the other hand, in some cases, it was shown that the set is finite [10]. We
also encourage readers to see [23] for generalizations of J(p) and to see [12] for
generalized hyperharmonic numbers, which is an extension of both generalized
harmonic and hyperharmonic numbers.

Throughout the paper, p will always denote a prime number and for any
rational numbers a, b, we mean by a ≡ b (mod m) that the numerator of a− b
in the lowest terms is divisible by m. In particular, we will work with the
equivalences by taking the modulo m, a prime p or a prime power pk. It is
known by [2] that

hp−1 ≡ 0 (mod p)

whenever p ≥ 3. The equivalence was shown for modulo p2 and primes p ≥ 5
in [21]. We will give an analogous result for generalized harmonic numbers in
Section 2 (see [15] for a survey on the generalizations of the congruence).

Moreover, we use the p-adic valuation, or the p-adic order, νp defined as
follows. For any integer n and a prime p, we have

νp(n) =

{
a if pa ∥ n,

∞ if n = 0

and for any rational number a
b , we set

νp

(a
b

)
= νp(a)− νp(b).

In Section 3, we let

J(p, s)(x) = Jp,s(x) = |{n ≤ x : n ∈ J(p, s)}|

for any positive real number x and then, construct the proof of our first theorem.

Theorem A. Let p be any prime number, s be any positive integer and x ≥ 1
be any real number. Then, we have

Jp,s(x) ≤ 3x
2
3+

1
25 log p+

log s
3 log p+

log s
3 log x .

In particular, whenever p > se
3
25 holds, we have

Jp,s(x) = o(x).

Notice here that as the integer s increases, the primes p must increase to
save the condition Jp,s(x) = o(x). For instance, when s = 10000, the primes
p must be strictly greater than 11273. For s = 100000, the primes p must be
strictly greater than 112741.

In Section 4, we show in some cases that J(p, s) is finite by considering the
position of a given integer n between the powers of the prime p. In particular,
our result shows that

J(p, s) ⊆ {1, . . . , p− 1}.
This is our second theorem.
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Theorem B. Let p be a prime number and s ≥ 2 be a positive integer with
p− 1 ∤ s.

If the inequality

νp

(
H(s)

r

)
≤ s− 1

holds for all 1 ≤ r ≤ p− 1, then J(p, s) only consists of elements from the set
{1, . . . , p− 1}. In particular, J(p, s) is finite.

At this point, we can present a table for the number of elements in the set
J(p, s) for some values of s and p which is obtained using [18]. A more detailed
table will be given in Section 5 as well.

Table 1. The number of elements in the set J(p, s) for several
p and s values.

s

p
2 3 5 7 11 13 17 19

1 0 3 3 13 638 3 3 19

2 0 0 2 3 2 2 2 2

3 0 1 1 1 3 1 3 1

4 0 0 0 2 2 2 4 2

5 0 1 1 1 3 1 1 1

6 0 0 2 0 2 4 2 2

7 0 1 1 1 1 3 3 3

8 0 0 0 2 2 2 4 4

9 0 1 1 1 1 1 4 5

10 0 0 2 2 0 2 2 2

Finally, in Section 5, we briefly discuss the case where the condition in
Theorem B fails. We present some examples which indicate some of those
cases, and the following proposition is our last result.

Proposition C. We have

J(7, 2) = {3, 6, 26} and J(37, 3) = {4, 13, 23, 32, 36, 1340, 1360}.

Next, we continue our investigation with Bernoulli and Euler numbers. The
kth Bernoulli number Bk is defined via the identity

x

ex − 1
=

∞∑
k=0

Bk
xk

k!
for k = 0, 1, 2, . . .
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and the Euler numbers En are defined recursively as (see [17])

E0 = 1,
∑

0≤i≤n
i:even

(
n

i

)
En−i = 0

for n ∈ Z>0. Then, we introduce the irregular primes and using some congru-
ence relations, we shed some light on the failed cases.

Short outline of the paper : We introduce the sets J(p, s) and J(ps, s) in
Section 2. In Section 3, we construct the counting arguments for the number
of elements in J(p, s) and prove Theorem A. In Section 4, we prove Theorem
B and in Section 5, we prove Proposition C and continue with the concluding
remarks.

2. Properties of J(p, s) and J(ps, s)

We begin with a crucial congruence which will be frequently used throughout
the paper. The result was first shown in [6] and we omit the proof (see also
[11]).

Proposition 2.1. Let p be a prime number. Then, we have

H
(s)
p−1 ≡ 0 (mod p)

whenever p− 1 ∤ s.

Now, we show that if we have an element of J(p, s), then dividing it by p
yields another element of the set.

Lemma 2.2. Let p be a prime and n be an element of J(p, s). Write n = pm+r
for some integers 0 ≤ r ≤ p−1 and m > 0. Then, m belongs to J(p, s) whenever

p− 1 ∤ s. In particular, νp(H
(s)
m ) ≥ s holds.

Proof. Suppose that n = pm + r in J(p, s) for some m, r as above. We know
by Proposition 2.1 that whenever p− 1 ∤ s, we have

H
(s)
p−1 = 1 +

1

2s
+ · · ·+

1

(p− 1)s
≡ 0 (mod p).

Now, if we write H
(s)
n = H

(s)
pm+r as

H(s)
n = 1 +

1

2s
+ · · ·+

1

(p− 1)s
+

1

ps

+
1

(p+ 1)2
+

1

(p+ 2)2
+ · · ·+

1

(2p− 1)s
+

1

(2p)2

...

+
1

(pm− p+ 1)s
+

1

(pm− p+ 2)s
+ · · ·+

1

(pm)s
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+
1

(pm+ 1)s
+

1

(pm+ 2)s
+ · · ·+

1

(pm+ r)s
,

then we see that

(1) H(s)
n ≡ H(s)

r +
1

ps
H(s)

m ≡ 0 (mod p).

In other words, νp

(
H

(s)
r + 1

psH
(s)
m

)
≥ 1. However, as 0 ≤ r ≤ p − 1, we

have νp(H
(s)
r ) ≥ 0. Therefore, if νp

(
1
psH

(s)
m

)
< 0 holds, then we would have

νp

(
H

(s)
r + 1

psH
(s)
m

)
<0 by the properties of the p-adic order. Thus, νp

(
1
psH

(s)
m

)
= νp

(
H

(s)
m

)
− s ≥ 0 so that νp(H

(s)
m ) ≥ s, which completes the proof. □

Proposition 2.3. Let p be a prime. Then, J(ps, s) is finite if and only if
J(p, s) is finite, whenever p− 1 ∤ s.

Proof. If J(p, s) is finite, then we can directly say that the set J(ps, s) is finite.

On the contrary, suppose that {n : ps | H(s)
n } is finite but J(p, s) is not. Let us

write J(ps, s) = {n : ps | H(s)
n } = {n1 < · · · < nc} and let m be an element of

J(p, s) so thatm > p(nc+1). Then, we can writem = pn+r with 0 ≤ r ≤ p−1.
In addition, by Lemma 2.2, we have that

H(s)
m ≡ 1

ps
H(s)

n +H(s)
r ≡ 0 (mod p)

with 0 ≤ r ≤ p− 1 and νp(H
(s)
n ) ≥ s. Thus, n ∈ {n : ps | H(s)

n } = J(ps, s) but
n > nc since

n =
m− r

p
≥ m− p+ 1

p
>

p(nc + 1)− p+ 1

p
=

pnc + 1

p
> nc,

contradicting the finiteness of J(ps, s). □

3. Proof of Theorem A

Suppose for the rest of the paper that p− 1 ∤ s. In this section, we give an
upper bound for the counting function J(p, s)(x) = Jp,s(x) that we define as

(2) J(p, s)(x) = |{n ≤ x : n ∈ J(p, s)}|

for any positive real number x. Then, let us define inductively the sets

Jp,s
(1) := {1 ≤ n ≤ p− 1 : p | H(s)

n },

Jp,s
(k+1) := {pn+ r ∈ J(p, s) : n ∈ J (k)

p,s , 0 ≤ r ≤ p− 1} for k = 1, 2, . . . .

Lemma 3.1. We have J
(k)
p,s = J(p, s) ∩ [pk−1, pk − 1] for any positive integer

k.
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Proof. The proof can be directly given by induction on k. In fact, for k = 1,
we have

J (1)
p,s = {1 ≤ n ≤ p− 1 : p | H(s)

n } = J(p, s) ∩ [1, p− 1].

Now, suppose that the claim is true for any i ≤ k and let us show that

J (k+1)
p,s = J(p, s) ∩ [pk, pk+1 − 1].

To begin with, if m ∈ J
(k+1)
p,s , then m = pn + r ∈ J(p, s) for some integers

n ∈ J
(k)
p,s and 0 ≤ r ≤ p−1. Moreover, we have n ∈ J

(k)
p,s = J(p, s)∩[pk−1, pk−1],

which implies that pn ∈ [pk, pk+1 − p]. Hence,

pk ≤ m = pn+ r ≤ pk+1 − p+ p− 1 = pk+1 − 1

so that m ∈ [pk, pk+1 − 1].
On the other hand, ifm ∈ J(p, s)∩[pk, pk+1−1], then we can writem = pn+r

for some positive integer n and an integer 0 ≤ r ≤ p− 1. Also, by Lemma 2.2,
we get n ∈ J(p, s). Now, if we show that n ∈ [pk−1, pk − 1], then we are done.
However, since

pk ≤ m = pn+ r ≤ pk+1 − 1

holds, we obtain that n ∈ [pk−1, pk − 1]. Hence, we have n ∈ J
(k)
p,s , and the

proof is done. □

In conclusion, we can partition J(p, s), which will ease the upcoming count-
ing arguments.

Corollary 3.2. J(p, s) =
⋃∞

k=1 J
(k)
p,s .

Now, we are ready to give an upper bound for the elements in a short interval
belonging to the set J(p, s). To do so, we will generalize the techniques from
[19] to the generalized harmonic numbers.

Lemma 3.3. Let p be a prime, p−1 ∤ s and x, y be real numbers with 1 ≤ y < p.
Suppose that

|J(p, s) ∩ [x, x+ y]| = {n1 < · · · < nt}.
Then, for any integer d ≥ 1 we have

|{i : ni+1 − ni = d}| ≤ s(d− 1).

Proof. For each i = 1, . . . , t− 1, let us set di = ni+1 − ni. Notice that

H(s)
ni+1

−H(s)
ni

=
1

(ni + 1)s
+ · · ·+ 1

(ni+1)s

=
1

(ni + 1)s
+ · · ·+ 1

(ni + di)s

≡ 0 (mod p).

Now, let fd(x) = (x+1)(x+2) · · · (x+d) for any d ≥ 1. Taking the logarithm
of both sides, one has that

log(fd(x)) = log((x+ 1)(x+ 2) · · · (x+ d)).
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Then, if we differentiate both sides, we obtain that

f
′

d(x)

fd(x)
=

1

x+ 1
+ · · ·+ 1

x+ d
.

Next, define gd(x) to be
f
′
d(x)

fd(x)
. It can be shown that

g
(k)
d (x) = (−1)kk!

d∑
i=1

(x+ i)−(k+1)

for k ≥ 0. Therefore, for any positive integer s, we have

gs−1
d (x) = (−1)s−1(s− 1)!

(
1

(x+ 1)s
+ · · ·+ 1

(x+ d)s

)
so that

g
(s−1)
di

(ni) = (−1)s−1(s− 1)!

(
1

(ni + 1)s
+ · · ·+ 1

(ni + di)s

)
= (−1)s−1(s− 1)!

(
H

(s)
ni+1 −H(s)

ni

)
.

Also, since H
(s)
ni+1 − H

(s)
ni ≡ 0 (mod p), we obtain that g

(s−1)
di

(ni) ≡ 0

(mod p). Notice that the numerator of the function g
(s−1)
di

(x) is a polynomial of

degree s(di − 1). Thus, g
(s−1)
di

(x) has at most s(di − 1) many solutions modulo
p. Hence, by taking d = di, we conclude the result. □

Now, we generalize the argument given in [22] to the generalized harmonic
numbers, which we will use for counting the number of elements in short inter-
vals lying in our set.

Lemma 3.4. Suppose that y ≥ 8
3 is a real number, s is a positive integer and

a1, . . . , at are integers satisfying 0 ≤ ak ≤ s(k − 1) for k = 1, . . . , t. Suppose
also that

t∑
k=1

kak ≤ y.

Then, we have

1 +

t∑
k=1

ak ≤

(
9

8

) 1
3

y
2
3 s

1
3 .

Proof. First, if y
s ≥ 8

3 , then setting y to be y
s and ak’s to be ak

s yields the result
by [22]. However, our objective will be bounding y by a prime number p to
count the number of elements of J(p, s) in short intervals. Therefore, we will
prove the general case.

To begin with, if a1 + · · ·+ at ≤ 1, then we have

1 +

t∑
k=1

ak ≤ 2 ≤

(
9

8

) 1
3

y
2
3 s

1
3
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as y ≥ 8
3 and s ≥ 1. Therefore, we may assume that a1 + · · ·+ at ≥ 2.

Now, we are going to rewrite each pair (ai, ai+1) of integers as follows. If

ak0 < s(k0 − 1) and ak0+1 > 0, then replace ak0 with a
′

k0
= ak0 + 1 and ak0+1

by a
′

k0+1 = ak0+1 − 1 and leave the numbers as they were, otherwise. Then,

for these new integers a
′

1, . . . , a
′

t, we have

0 ≤ a
′

k ≤ s(k − 1)

with k = 1, . . . , t.
Notice that for any pair (ak, ak+1), one has

a
′

k + a
′

k+1 = ak + 1 + ak+1 − 1 = ak + ak+1

and also

ka
′

k + (k + 1)a
′

k+1 = kak + k + (k + 1)ak+1 − (k + 1)

= kak + (k + 1)ak+1 − 1

< kak + kak+1.

Therefore, we obtain

(3)

t∑
k=1

ka
′

k <

t∑
k=1

kak ≤ y

and
t∑

k=1

a
′

k =

t∑
k=1

ak.

Continuing the process, we obtain w ≤ t integers b1, . . . , bw with

bk = s(k − 1) for 1 ≤ k < w, and 1 ≤ bw ≤ s(w − 1)

such that
w∑

k=1

bk =

t∑
k=1

ak.

Furthermore, we can write via (3) that

w∑
k=1

kbk ≤ y.

Notice that this process generates an increasing sequence of non-negative
integers that increases by s at each step. In the end, we only consider non-zero
elements of the sequence and know the exact values of those, except for the
last one, bw.

Now, we have

y ≥
w∑

k=1

kbk = wbw +

w−1∑
k=1

kbk = wbw +

w−1∑
k=1

k(s(k − 1)) = wbw + s

w−1∑
k=1

(k2 − k)
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such that

(4) y ≥ s

(
w(w − 1)(w − 2)

3

)
+ wbw.

Here, (4) implies that

s (w(w − 1)(w − 2)) + 3wbw ≤ 3y,

and consequently

(5) (sw(w − 1)(w − 2) + 3wbw)
2/3

s1/3 ≤ (3y)2/3s1/3

holds. Furthermore, we have

t∑
k=1

ak =

w∑
k=1

bk = bw +

w−1∑
k=1

bk = bw +

w−1∑
k=1

s(k − 1)

= bw +

(
s

w−1∑
k=1

k − 1

)
= s

(
(w − 1)(w − 2)

2

)
+ bw.

Next, since 1 ≤ bw ≤ w − 1 and
∑t

k=1 ak ≥ 2, we have(
s
(w − 1)(w − 2)

2
+ bw

)
≥ 2

so that w ≥ 3. Now, we consider two cases, namely, when bw = 1 and bw ≥ 2.
Case i) bw = 1.

Observe that (5) can be written as

(sw(w − 1)(w − 2) + 3w)
2/3

s1/3 ≤ (3y)2/3s1/3,

and if

2

(
1 +

t∑
k=1

ak

)
= 2

[
1 +

(
s
(w − 1)(w − 2)

2
+ 1

)]
= s(w − 1)(w − 2) + 4

≤
(
sw(w − 1)(w − 2) + 3w

)2/3

s1/3

is satisfied, then we are done. In other words, if

(6) (s(w − 1)(w − 2) + 4)
3 ≤ s (sw(w − 1)(w − 2) + 3w)

2

holds, then we are done. Here, when s = 1, we get that

((w − 1)(w − 2) + 4)3 ≤ (w(w − 1)(w − 2) + 3w)
2
.

However, the inequality is satisfied for any w ≥ 3 as it can be checked from the
proof of [22, Lemma 2.3].

Hence, we can assume s ≥ 2 for the rest of the proof. Next, let us set

v = (w − 1)(w − 2)
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so that v ≥ 2 as w ≥ 3. Therefore, the inequality (6) is written as

s(swv + 3w)2 − (sv + 4)3 ≥ 0.

Consequently, our aim is now to show that

sw2(sv + 3)2 − (sv + 4)3 ≥ 0.

However, for the left-hand side, we have

sw2(sv + 3)2 − (sv + 4)3

= sw2(s2v2 + 6sv + 9)− (s3v3 + 12s2v2 + 48sv + 64)

= (s3w2v2 + 6s2w2v + 9sw2)− (s3v3 + 12s2v2 + 48sv + 64)

= (s3w2v2 − s3v3) + (6s2w2v + 9sw2 − 12s2v2 − 48sv − 64)

= (3s3v2w − 2s3v2) +
(
−12s2v2 + (6s2w2v − 48sv) + (9sw2 − 64)

)
=
(
s2v2(3sw − 2s− 12)

)
+
(
(6s2w2v − 48sv) + (9sw2 − 64)

)
=

s2v2 (3sw − 2s− 12)︸ ︷︷ ︸
≥0

+

6sv (sw2 − 8)︸ ︷︷ ︸
≥0

+(9sw2 − 64)︸ ︷︷ ︸
≥0

 ≥ 0

since s ≥ 2, w ≥ 3 and v ≥ 2.
Case ii) bw ≥ 2.

First, assume that w ≥
(
3y
s

) 1
3 holds. We know by (4) that

y ≥ s

(
w(w − 1)(w − 2)

3

)
+ wbw = B.

Therefore,

1 +

t∑
k=1

ak =
s

2
(w − 1)(w − 2) + bw + 1

=
3

w

w

3

(s
2
(w − 1)(w − 2)

)
+ bw + 1

=
3

2w

(
sw(w − 1)(w − 2)

3
+

2

3
wbw +

2

3
w

)

=
3

2w
(B − w

3
bw +

2

3
w)

≤ 3

2w
(B − 2

3
w +

2

3
w) as bw ≥ 2

≤ 3y

2w
.
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Hence, we get

1 +

t∑
k=1

ak ≤ 3y

2w
≤ 3

2

y

( 3ys )
1
3

=

(
9

8

) 1
3

y
2
3 s

1
3 .

Finally, consider the case when w <
(
3y
s

) 1
3 . Recall that w ≥ 3 and bw ≤

s(w − 1) holds. Thus, we get that

1 +

t∑
k=1

ak =
s

2
(w − 1)(w − 2) + bw + 1

≤ s

2
(w − 1)(w − 2) + s(w − 1) + 1

=
1

2
(sw2)− sw

2
+ 1

≤ 1

2
sw2

<
1

2
s

(
3y

s

) 2
3

=

(
9

8

) 1
3

y
2
3 s

1
3

and the proof is complete. □

Lemma 3.5. For any real numbers x, y and for any prime number p with
8
3 ≤ y < p and for any positive integer s, we have

|J(p, s) ∩ [x, x+ y]| ≤

(
9

8

) 1
3

y
2
3 s

1
3 .

Proof. We can write

|J(p, s) ∩ [x, x+ y]| = {n1 < · · · < nt}
so that if we set

ak = |{1 ≤ i ≤ t− 1 : ni+1 − ni = k}|,
then 0 ≤ ak ≤ s(k − 1) holds by Lemma 3.3. Moreover, we have∑

k

kak =

t−1∑
i=1

(ni+1 − ni) ≤ y

such that the assumptions of Lemma 3.4 are satisfied. Finally, we have that

|J(p, s) ∩ [x, x+ y]| = t = 1 +
∑
k

ak ≤ y

and the proof is done by Lemma 3.4. □
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Now, we are set to prove our first result, Theorem A.

Theorem A. Let p be any prime number, s be any positive integer and x ≥ 1
be any real number. Then, we have

Jp,s(x) ≤ 3x
2
3+

1
25 log p+

log s
3 log p+

log s
3 log x .

In particular, whenever p > se
3
25 holds, we have

Jp,s(x) = o(x).

Proof of Theorem A. To begin with, for s = 1, we have J(p, s) = J(p, 1) = J(p)
such that the result follows from [22]. Also, we can omit the cases p = 2, 3, 5
from Table 1, so let p ≥ 7, s > 1 and set

A =

(
9

8

) 1
3

(p− 1)
2
3 s

1
3 .

Then, by the definition of J
(1)
p,s and by Lemma 3.5, we can write that∣∣∣J (1)

p,s | = |J(p, s) ∩ [1, p− 1]
∣∣∣ ≤ A.

In fact, by Lemma 3.1, we write∣∣∣J (k+1)
p,s

∣∣∣ = ∑
n∈J

(k)
p,s

|J(p, s) ∩ [pn, pn+ p− 1]| ≤
∣∣∣J (k)

p,s

∣∣∣A.

As a conclusion, for any positive integer k, we get∣∣∣J (k)
p,s

∣∣∣ ≤ Ak.

Next, we start our work on Jp,s(x). One can find a positive integer m satisfying

pm−1 ≤ x < pm.

Then, we write

(7) Jp,s(x) = Jp,s(p
m−1 − 1) + |J(p, s) ∩ [pm−1, x]|

and work with the summands separately. First, we have

Jp,s(p
m−1 − 1) =

m−1∑
k=1

∣∣J(p, s) ∩ [pk−1, pk − 1]
∣∣

=

m−1∑
k=1

∣∣∣J (k)
p,s

∣∣∣
≤

m−1∑
k=1

Ak <
A

A− 1
Am−1(8)
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by Lemma 3.1. Next, for |J(p, s) ∩ [pm−1, x]|, we have

|J(p, s) ∩ [pm−1, x]| ≤
∑

n∈J(m−1)
p,s

pn≤x

|J(p, s) ∩ [pn, pn+ p− 1]|

≤ A
∑

n∈J(m−1)
p,s

pn≤x

1

= A

∣∣∣∣J(p, s) ∩ [pm−2,
x

p

]∣∣∣∣ .
In addition, observe that we have

A

∣∣∣∣J(p, s) ∩ [pm−2,
x

p

]∣∣∣∣ ≤ A2

∣∣∣∣J(p, s) ∩ [pm−3,
x

p2

]∣∣∣∣
and if we continue in this manner, we obtain that

|J(p, s) ∩ [pm−1, x]| ≤ A

∣∣∣∣J(p, s) ∩ [pm−2,
x

p

]∣∣∣∣
≤ Am−1

∣∣∣∣J(p, s) ∩ [1, x

pm−1

]∣∣∣∣ .(9)

For
∣∣∣J(p, s) ∩ [p1, x

pm−1

]∣∣∣, if x < 3pm−1 holds, then we get∣∣∣∣J(p, s) ∩ [1, x

pm−1

]∣∣∣∣ ≤ 1 ≤
(
9

8

) 1
3
(

x

pm−1

) 2
3

s
1
3 .

If x ≥ 3pm−1 holds, then by Lemma 3.5, we have∣∣∣∣J(p, s) ∩ [1, x

pm−1

]∣∣∣∣ ≤ (9

8

) 1
3
(

x

pm−1

) 2
3

s
1
3 .

Therefore, (9) can be written as

|J(p, s) ∩ [pm−1, x]| ≤ Am−1

∣∣∣∣J(p, s) ∩ [1, x

pm−1

]∣∣∣∣
≤ Am−1

(
9

8

) 1
3
(

x

pm−1

) 2
3

s
1
3 .(10)

Now, by (8) and (10), we write for (7) that

Jp,s(x) = Jp,s(p
m−1 − 1) + |J(p, s) ∩ [pm−1, x]|

≤ A

A− 1
Am−1 +Am−1

(
9

8

) 1
3
(

x

pm−1

) 2
3

s
1
3

≤ 3Am−1s
1
3

(
x

pm−1

) 2
3
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= 3

(9

8

) 1
3

(p− 1)
2
3 s

1
3

m−1

s
1
3

(
x

pm−1

) 2
3

= 3

(
9

8

)m−1
3

s
m−1

3 s
1
3x

2
3

= 3

(
9

8

)m−1
3

s
m
3 x

2
3 ≤ 3

(
e

1
25

)m−1

s
m
3 x

2
3 .

Notice that the inequality pm−1 ≤ x < pm yields that

(11) m− 1 ≤ log x

log p
.

Hence,

Jp,s(x) ≤ 3
(
e

1
25

) log x
log p

s
m
3 x

2
3 = 3

(
x

1
25 log p

)
s

m
3 x

2
3 = 3x

2
3+

1
25 log p s

m
3 .(12)

Next, we work on s
m
3 to complete the proof. First, we write

s
m−1

3 ≤ s
log x
3 log p

such that

slog x = elog (slog x) = elog x log s = xlog s.

Thus, we have

s
log x
3 log p = x

log s
3 log p

which yields that

(13) s
m−1

3 ≤ x
log s
3 log p .

On the other hand, for s
1
3 we have

(14) s
1
3 = x

log s
3 log x .

Now, if we combine (13) and (14), we can write

s
m
3 ≤ x

log s
3 log p+

log s
3 log x .

Then, feeding our result into (12) we obtain the upper bound for our set as

Jp,s(x) ≤ 3x
2
3+

1
25 log px

log s
3 log p+

log s
3 log x = 3x

2
3+

1
25 log p+

log s
3 log p+

log s
3 log x .

Finally, for the last part of the proof, the inequality

1

25 log p
+

log s

3 log p
+

log s

3 log x
<

1

3

must hold to have Jp,s(x) = o(x). That is,

3(3 log x+ 25 log s log x+ 25 log s log p) < 75 log p log x or

9 log x+ 75 log x log s+ 25 log p log s < 75 log x log p
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must be satisfied. Now, we can say that when x is large enough, then
25 log p log s is relatively small. Therefore, if

75 log x log p > 9 log x+ 75 log x log s

holds, then we are done. That is, log p− log s > 9
75 , so that we obtain

p > se
3
25 .

The proof is complete. □

4. Proof of Theorem B

In this section, we will prove Theorem B. Let us check Table 1 given in the
Introduction for the number of elements in the set J(p, s) before we begin the
proof.

s

p
2 3 5 7 11 13 17 19

1 0 3 3 13 638 3 3 19

2 0 0 2 3 2 2 2 2

3 0 1 1 1 3 1 3 1

4 0 0 0 2 2 2 4 2

5 0 1 1 1 3 1 1 1

6 0 0 2 0 2 4 2 2

7 0 1 1 1 1 3 3 3

8 0 0 0 2 2 2 4 4

9 0 1 1 1 1 1 4 5

10 0 0 2 2 0 2 2 2

As it can be seen from Table 1, for some levels of s, the set J(p, s) is non-
trivial. That is, there are additional elements inside J(p, s) except for p − 1,
provided that p− 1 ∤ s.

For instance, let us show for s = 2 that{
p− 1

2
, p− 1

}
⊆ J(p, s) for p > 3.

Suppose that p > 3 is a prime number. Then, by Proposition 2.1, we have

H
(s)
p−1 ≡ 0 (mod p)

and observe that

(15)
1

k2
≡ 1

(p− k)2
(mod p)
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holds for any k = 1, 2, . . . , p−1
2 . Consequently,

H
(2)
p−1 =

p−1∑
k=1

1

k2
≡ 2

p−1
2∑

k=1

1

k2
= 2H

(2)
(p−1)/2 ≡ 0 (mod p)

such that H
(2)
(p−1)/2 ≡ 0 (mod p) as p > 3. In fact, this result can be extended

to all even integers s and p > 3 with p− 1 ∤ s as the congruence (15) holds for
all those numbers.

Now, we prove Theorem B. Let n be a positive integer, p be a prime and s
be a positive integer with p− 1 ∤ s. We can write

pm−1 ≤ n < pm

for somem ∈ Z>0. The p-adic order ofH
(s)
n is then determined by the multiples

of pm−1 up to n. For instance, we may have pm−1 < 2pm−1 ≤ n < 3pm−1 < pm

and that

H(s)
n = 1 +

1

2s
+ · · ·+ 1

(pm−1)s
+ · · ·+ 1

(2pm−1)s
+ · · ·+ 1

ns
.

In particular, by checking the p-adic order of

1

(pm−1)s
H(s)

r

for 1 ≤ r ≤ p − 1, we may be able to find the exact p-adic order of H
(s)
n .

Moreover, if the inequality

(16) νp

(
1

(pm−1)s
H(s)

r

)
< −s(m− 2)

holds for any r ∈ {1, 2, . . . , p−1}, then we obtain the finiteness of J(p, s). That
is because when m − 1 ≥ 1, the terms with the highest exponents of p in the

denominators cannot add up and increase the p-adic order νp
(
H

(s)
n

)
as they

cannot reach to the level pm−2. Therefore, the only integers n, which may lie
in J(p, s) can be the ones with m = 1, so we have

1 = p0 ≤ n < p.

However, for the inequality (16), we have

−s(m− 1) + νp(H
(s)
r ) < −s(m− 2) so that νp(H

(s)
r ) < s.

Consequently, J(p, s) is a subset of the set {1, . . . , p − 1} and the proof is
complete.
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5. Concluding remarks

In this section, we present some explicit results on J(p, s) using SageMath.
The code to calculate the number of elements of J(p, s) is given in Appendix
A. Also, for the exact p-adic orders of some generalized harmonic numbers,
we encourage interested readers to [13]. Moreover, we briefly discuss the case
where the condition in Theorem B fails.

Now, for some primes p and a positive integer s with p−1 ∤ s, we will present
the values of the numbers H

(s)
n , together with the p-adic orders νp

(
H

(s)
n

)
for

1 ≤ n ≤ p− 1. We can take s = 2 and for the prime numbers p, we begin with
p = 5 and then, prove Proposition C.

Table 2. The values of H
(s)
n together with the 5-adic orders

for s = 2.

n H
(2)
n ν5

(
H

(2)
n

)
1 1 0

2 5/4 1

3 49/36 0

4 205/144 1

One may see from Table 2 that the condition

ν5

(
H(s)

n

)
≤ 1 = s− 1

holds for all 1 ≤ n ≤ 4. Therefore, we conclude that

J(5, 2) ⊆ {1, 2, 3, 4}
by Theorem B. In fact, we have J(5, 2) = {2, 4}.

Next, we continue with the case p = 7 and s = 2.

Table 3. The values of H
(s)
n together with the 7-adic orders

for s = 2.

n H
(2)
n ν7

(
H

(2)
n

)
1 1 0

2 5/4 0

3 49/36 2

4 205/144 0

5 5269/3600 0

6 5369/3600 1
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For p = 7 and s = 2, the condition in Theorem B fails, namely,

ν7

(
H(2)

r

)
≤ 2− 1 = 1

is not satisfied for all r ∈ {1, . . . , 6}. We have H
(2)
3 = 49

36 so that

ν7

(
H

(2)
3

)
= 2 ̸≤ 1.

Therefore, we may be able to find some element n ∈ J(7, 2) with n > 7. It
turns out that we have 26 ∈ J(7, 2), as

ν7

(
H

(2)
26

)
= ν7(23507608254234781649/14626411683380640000) = 1.

On the other hand, there is not any positive integer greater than 26 in
J(7, 2). Recall by Corollary 3.2 that

J(p, s) =

∞⋃
k=1

J (k)
p,s ,

where J
(k)
p,s = J(p, s)∩ [pk−1, pk − 1] for k ∈ Z>0. Moreover, using [18] with our

work given in Appendix A, we have

J
(1)
7,2 = {3, 6}, J (2)

7,2 = {26} and J
(3)
7,2 = ∅.

In conclusion, we have

J(7, 2) = J
(1)
7,2 ∪ J

(2)
7,2 = {3, 6, 26}.

For p = 37 and s = 3, we have

ν37

(
H

(3)
36

)
= 3 ̸≤ 3− 1 = 2.

Therefore, we may find some element in J(37, 3) that is greater than 37. Now,
again using [18], we have the following levels for J(37, 3):

J
(1)
37,3 = {4, 13, 23, 32, 36}, J (2)

37,3 = {1340, 1360} and J
(3)
7,2 = ∅.

Hence, we find the elements {1340, 1360} that are greater than 37. How-
ever, there is not any other elements of J(37, 3), so that we have J(37, 3) =
{4, 13, 23, 32, 36, 1340, 1360}, which proves Proposition C.

One may infer that the natural candidate, for which the condition νp

(
H

(s)
r

)
≤ s − 1 fails is when r = p − 1. Hence, the exact p-adic valuation of H

(s)
p−1

or congruence relations modulo powers of p is needed for that purpose. For
instance, we have the following congruence relations, provided that p ≥ s + 3
(see [7] and [8]) as

(17)

p−1∑
k=1

1

ks
≡

{
s

s+1pBp−1−s (mod p2) if s is even,

− s(s+1)
2(s+2)p

2Bp−2−s (mod p3) if s is odd,
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where Bk is the kth Bernoulli number defined via the identity

x

ex − 1
=

∞∑
k=0

Bk
xk

k!
for k = 0, 1, 2, . . . .

The first few Bernoulli numbers are B0 = 1, B1 = − 1
2 , B2 = 1

6 , B3 = 0, B4 =
1
30 and in fact, one has B2k+1 = 0 for any k ≥ 1.

Now, for p = 37 and s = 3, using [18], we see that

νp(Bp−2−s) = ν37(B32) = 1

and the congruence (17) yields

H
(3)
36 ≡ 0 (mod p3).

In fact, 37 is the smallest irregular prime. That is, a prime p > 3 is called
irregular if p divides at least one of the numbers B2, B4, . . . , Bp−3. Also, we
note that if we have an irregular prime p > 3, then

νp(H
(s)
p−1) > 1

is satisfied for more than 1
2 of the whole positive integers s by [13], so that

working on these primes may be one approach to understand our set more.
Furthermore, we briefly discuss the congruence relations with Euler numbers.

They are defined recursively as

E0 = 1,
∑

0≤i≤n
i:even

(
n

i

)
En−i = 0

for n ∈ Z>0. For instance, let s = 2 and p > 3 be a prime. Then, we have by
[14] that

(18)

⌊ p
4 ⌋∑

k=1

1

k2
≡ (−1)(

p−1
2 )4Ep−3 (mod p).

Thus, in this case, the p-adic valuation of these numbers are related to the
Euler numbers Ep−3 so that if the right-hand side is 0, we have νp(Ep−3) ≥ 1.
Therefore, if we conclude that the p-adic order is greater than 1, our condition
fails and we get

p < p
⌊p
4

⌋
+ r ∈ J(p, s)

for some r ∈ {0, 1, . . . , p − 1}. Furthermore, the prime p is called E-irregular
in this case (see also [16]), which is similar to the definition of irregular primes
defined for Bernoulli numbers.

In conclusion, the irregular primes may have significant importance on the
finiteness of the set J(p, s).
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Finally, we close our section with the sets J(p, s) for primes p up to 100
and s = 2, 3, 4, 5. The table is obtained using [18] with the code provided in
Appendix A as follows. We have by Corollary 3.2 that

J(p, s) =

∞⋃
k=1

J (k)
p,s .

The code runs until finding a level k with J
(k)
p,s = ∅, so that we are able to get

the whole set J(p, s).

Table 4. The sets J(p, s) for several p and s values.

p J(p, 2) J(p, 3) J(p, 4) J(p, 5)

2 ∅ ∅ ∅ ∅
3 ∅ {2} ∅ {2}
5 {2, 4} {4} ∅ {4}
7 {3, 6, 26} {6} {3, 6} {6}
11 {5, 10} {4, 6, 10} {5, 10} {2, 8, 10}
13 {6, 12} {12} {6, 12} {12}
17 {8, 16} {7, 9, 16} {2, 8, 14, 16} {16}
19 {9, 18} {18} {9, 18} {18}
23 {11, 22} {22} {11, 22} {22}
29 {14, 28} {28} {14, 28} {6, 22, 28}
31 {15, 30} {8, 22, 30} {15, 30} {30}
37 {15, 18, 21, 36} {4, 13, 23, 32, 36, 1340, 1360} {18, 36} {6, 9, 12, 18, 24, 27, 30, 36}
41 {4, 20, 36, 40} {40} {18, 20, 22, 40} {40}
43 {11, 21, 31, 42} {42} {21, 42} {42}
47 {23, 46} {5, 41, 46} {23, 46} {14, 32, 46}
53 {26, 52} {6, 46, 52} {26, 52} {52}
59 {6, 24, 29, 34, 52, 58} {58} {15, 29, 43, 58} {58}
61 {30, 60} {60} {30, 60} {60}
67 {33, 66} {28, 30, 36, 38, 66} {24, 33, 42, 66} {66}
71 {35, 70} {70} {28, 35, 42, 70} {9, 61, 70}
73 {36, 72} {72} {36, 72} {72}
79 {39, 78} {78} {6, 39, 72, 78} {78}
83 {41, 82} {82} {41, 82} {3, 15, 21, 61, 67, 79, 82}
89 {44, 88} {10, 43, 45, 78, 88} {44, 88} {88}
97 {15, 48, 81, 96} {96} {38, 48, 58, 96} {3, 22, 74, 93, 96}

Acknowledgements. We are grateful to the referee for the comments which
improved the presentation and quality of the paper.

Appendix A. The code to compute J(p, s)

In Section 4, the SageMath code we used to find the elements of J(p, s) is
as below.
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def dp(p,k):

finalArray = []

if k==1:

finalArray =[p^(k-1)..p^(k)-1]

else:

for a in dp(p,k-1):

for j in [0..p-1]:

finalArray.append(p*a+j)

return finalArray

## Set p and s

p = 7

s = 2

num = 1

k = 1

mainArray = []

while True:

if num == 0:

print "Finished"

break

print "Level k =",k,":"

subInterval = [n for n in dp(p,k) if valuation(harmonic_number(n,s),p)>0]

print subInterval

mainArray = mainArray + subInterval

num = len(subInterval)

k = k+1

print "J(p,s) = ","J(",p,",",s,")"

print mainArray

print "number of elements: ", len(mainArray)
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[20] D. C. Sertbaş, Hyperharmonic integers exist, C. R. Math. Acad. Sci. Paris 358 (2020),
no. 11-12, 1179–1185. https://doi.org/10.5802/crmath.137

[21] J. Wolstenholme, On certain properties of prime numbers, Quart. J. Pure Appl. Math.

5 (1862), 35–39.
[22] B.-L. Wu and Y.-G. Chen, On certain properties of harmonic numbers, J. Number

Theory 175 (2017), 66–86. https://doi.org/10.1016/j.jnt.2016.11.027
[23] J. Zhao, Finiteness of p-divisible sets of multiple harmonic sums, Ann. Sci. Math.
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