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ON THE DENOMINATORS OF ε-HARMONIC NUMBERS

Bing-Ling Wu and Xiao-Hui Yan

Abstract. Let Hn be the n-th harmonic number and let vn be its de-

nominator. Shiu proved that there are infinitely many positive integers n
with vn = vn+1. Recently, Wu and Chen proved that the set of positive

integers n with vn = vn+1 has density one. They also proved that the

same result is true for the denominators of alternating harmonic num-
bers. In this paper, we prove that the result is true for the denominators

of ε-harmonic numbers, where ε = {εi}∞i=1 is a pure recurring sequence

with εi ∈ {−1, 1}.

1. Introduction

For any positive integer n, let

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
=
un
vn
, (un, vn) = 1, vn > 0.

The number Hn is called the n-th harmonic number.
For any prime number p, let Jp be the set of positive integers n with p | un.

Eswarathasan and Levine [2] conjectured that Jp is finite for any prime number
p. Boyd [1] conjectured that |Jp| = O(p2(log log p)2+ε). For any set S of
positive integers and any real number x ≥ 1, let S(x) = |S ∩ [1, x]|. Sanna [3]
proved that

Jp(x) ≤ 129p
2
3x0.765.

This was improved by Wu and Chen [5] to

(1.1) Jp(x) ≤ 3x
2
3+

1
25 log p .

Shiu [4] proved that there are infinitely many positive integers n with vn =
vn+1. Recently, Wu and Chen [6] proved that the set of positive integers n
with vn = vn+1 has density one. They also proved that the same result is true
for the denominators of alternating harmonic numbers.

For any sequence ε = {εi}∞i=1, if there is a positive integer s such that

εi+s = εi, i = 1, 2, 3, . . . ,

Received November 28, 2019; Revised April 14, 2020; Accepted June 15, 2020.
2010 Mathematics Subject Classification. 11B75, 11B83.
Key words and phrases. Harmonic numbers, p-adic valuation, asymptotic density, recur-

ring sequences.

c©2020 Korean Mathematical Society

1383



1384 B.-L. WU AND X.-H. YAN

then the sequence ε is called a pure recurring sequence and s is a period of the
sequence.

For any positive integer n and any sequence ε, let

Hn,ε =

n∑
i=1

εi
i

=
an(ε)

bn(ε)
, (an(ε), bn(ε)) = 1, bn(ε) > 0.

The number Hn,ε is called the n-th ε-harmonic number.
In this paper, the following result is proved.

Theorem 1.1. Let ε = {εi}∞i=1 be a pure recurring sequence with εi ∈ {−1, 1}.
Then the set of positive integers n with bn(ε) = bn+1(ε) has density one.

2. Proof of Theorem 1.1

Let ε = {εi}∞i=1 be a pure recurring sequence with εi ∈ {−1, 1} and s
be a period of the sequence. For any prime number p, define each sequence
δj = {δj,i}∞i=1 (j = 0, 1, . . .) as follows:

(2.1) δ0,i = εi, δj+1,i = δj,pi, j = 0, 1, . . . .

It is clear that the sequences δ1, δ2, . . . have a period s and δj,i ∈ {1,−1}.
For any prime number p and any positive integer m, let Sp,ε be the set of

positive integers n with p | an(ε), let Im,ε be the set of positive integers n with
m - bn(ε).

Lemma 2.1. Let ε = {εi}∞i=1 be a pure recurring sequence with εi ∈ {−1, 1}
and s be a period of the sequence. Let p be a prime number and let x and y be
two real numbers with 1 ≤ y < p. Write

Sp,ε ∩ [x, x+ y] = {n1 < n2 < · · · < nl}.

Then, for any integer d ≥ 1, we have

|{i : ni − ni−1 = d}| ≤ s(d− 1).

Proof. If l ≤ 1, the result is obvious. We may assume that l ≥ 2. For any
positive integer d and any real number x, let

fd(x) = (x+ 1)(x+ 2) · · · (x+ d),

g1,d(x) =
fd(x)

x+ 1
ε1 +

fd(x)

x+ 2
ε2 + · · ·+ fd(x)

x+ d
εd,

g2,d(x) =
fd(x)

x+ 1
ε2 +

fd(x)

x+ 2
ε3 + · · ·+ fd(x)

x+ d
εd+1,

...

gs,d(x) =
fd(x)

x+ 1
εs +

fd(x)

x+ 2
εs+1 + · · ·+ fd(x)

x+ d
εs+d−1.
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It is clear that gj,d(x) is an integer-valued polynomial. Since gj,d(−1) = (d−1)!
or gj,d(−1) = −(d−1)!, it follows that gj,d(x) is a nonzero polynomial of degree
at most d− 1 for every j. Let

{n1, n2, . . . , nl} =

s−1⋃
j=0

Aj , Aj = {nt ∈ Sp,ε ∩ [x, x+ y] : nt ≡ j (mod s)}.

For every integer 0 ≤ j ≤ s − 1, if there exists an integer nt ∈ Aj and
nt+1 − nt = d, then

gj+1,d(nt) = (Hnt+1,ε −Hnt,ε)fd(nt)

=

(
ant+1

(ε)

bnt+1
(ε)
− ant(ε)

bnt(ε)

)
fd(nt).

Since

p | ant+1(ε), p | ant(ε),
it follows that

gj+1,d(nt) ≡ 0 (mod p).

Noting that y < p and there are at most d− 1 solutions of the equation

gj+1,d(x) ≡ 0 (mod p).

It follows that, for every integer 0 ≤ j ≤ s− 1, there are at most d− 1 integers
nt ∈ Aj with nt+1 − nt = d. Therefore, for any integer d ≥ 1, we have

|{i : ni − ni−1 = d}| ≤ s(d− 1).

This completes the proof of Lemma 2.1. �

Lemma 2.2. Let ε = {εi}∞i=1 be a pure recurring sequence with εi ∈ {−1, 1}
and s be a period of the sequence. For any prime number p and any real numbers
x, y with 1 ≤ y < p, we have

|Sp,ε ∩ [x, x+ y]| ≤ 3s
1
3 y

2
3 .

Proof. Let

Sp,ε ∩ [x, x+ y] = {n1 < n2 < · · · < nl}
and

ad = |{i : ni − ni−1 = d}|.
Let z = (y/s)1/3. By Lemma 2.1 we have∑

d≤z

ad ≤ s
∑
d≤z

(d− 1) ≤ sz2 = s1/3y2/3.

Clearly,

y1/3

s1/3

∑
d>z

ad = z
∑
d>z

ad ≤
∑
d

dad =

l−1∑
i=1

(ni+1 − ni) = nl − n1 ≤ y.
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By the definition of ad we have

|Sp,ε ∩ [x, x+ y]| = l = 1 +
∑
d

ad ≤ 1 + 2s1/3y2/3 ≤ 3s1/3y2/3.

This completes the proof of Lemma 2.2. �

Lemma 2.3. For any prime number p, let δj (j = 0, 1, . . .) be sequences defined
in (2.1). For any real number x ≥ 1, we have

Sp,δj (x) ≤ min

{
4s

1
3x

2
3+

log(64s)
3 log p , p2x1−

log 3
2

log p

}
.

Proof. Firstly, we prove that Sp,δj (x) ≤ 4s
1
3x

2
3+

log(64s)
3 log p . Let m be an integer

with m ∈ Sp,δj and m ≥ p, then p | am(δj). Write m = pm1 + r, where m1 ≥ 1
and 0 ≤ r < p. Since

Hm,δj =

m∑
i=1
p-i

δj,i
i

+

m∑
i=1
p|i

δj,i
i

=
b

a
+

1

p
Hm1,δj+1 =

pbbm1
(δj+1) + aam1

(δj+1)

pabm1(δj+1)
,

where a and b are coprime integers, it follows that p | pbbm1
(δj+1)+aam1

(δj+1).
Noting that p - a, we have p | am1(δj+1) and so m1 ∈ Sp,δj+1 .

Let k be the integer with pk ≤ x < pk+1. Let A = 3s
1
3 (p − 1)

2
3 . In view of

Lemma 2.2,

Sp,δj (x) ≤ |Sp,δj ∩ [1, p− 1]|+
∑

n∈Sp,δj+1
∩[1, xp ]

|Sp,δj ∩ [pn, pn+ p− 1]|

≤ A+A|Sp,δj+1 ∩ [1,
x

p
]|

≤ A+A2 +A2|Sp,δj+2
∩ [1,

x

p2
]|

...

≤ A+ · · ·+Ak +Ak|Sp,δj+k ∩ [1,
x

pk
]|

≤ (A+ 1)k +Ak ·

(
3s1/3

(
x

pk

)2/3
)

≤ (A+ 1)k ·

(
1 + 3s1/3

(
x

pk

)2/3
)

≤
(

4s1/3(p− 1)2/3
)k(

4s1/3
(
x

pk

)2/3
)

≤ (4s
1
3 )k+1x

2
3 .
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By pk ≤ x < pk+1 we have

k ≤ log x

log p
.

Therefore

Sp,δj (x) ≤ (4s
1
3 )k+1x

2
3 ≤ 4s

1
3x

2
3+

log(64s)
3 log p .

Now, we prove that Sp,δj (x) ≤ p2x1−
log 3

2
log p . It is easy to prove that S2,δj = ∅.

We may assume that p ≥ 3. In view of Lemma 2.1, there is no integer n such
that both n and n+ 1 are in Sp,δj . It follows that

Sp,δj (x) ≤ |Sp,δj ∩ [1, p− 1]|+
∑

n∈Sp,δj+1
∩[1, xp ]

|Sp,δj ∩ [pn, pn+ p− 1]|

≤ p+ 1

2
+
p+ 1

2
|Sp,δj+1

∩ [1,
x

p
]|

≤ p+ 1

2
+

(
p+ 1

2

)2

+

(
p+ 1

2

)2

|Sp,δj+2 ∩ [1,
x

p2
]|

...

≤ p+ 1

2
+ · · ·+

(
p+ 1

2

)k
+

(
p+ 1

2

)k
|Sp,δj+k ∩ [1,

x

pk
]|

≤ p+ 1

2
+ · · ·+

(
p+ 1

2

)k+1

≤
(
p+ 1

2

)k+2

≤
(

2p

3

)k+2

≤
(

2

3

)k+1

p2x.

Since (
3

2

)k+1

> x
log 3

2
log p ,

it follows that

Sp,δj (x) ≤ p2x1−
log 3

2
log p .

This completes the proof of Lemma 2.3. �

Lemma 2.4. For any prime number p, let δj (j = 0, 1, . . .) be sequences defined
in (2.1). For any positive integer k, we have

Ipk,ε = {pkn1 + r : n1 ∈ Sp,δk ∪ {0}, 0 ≤ r ≤ pk − 1} \ {0}.
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Proof. It is clear that n ∈ Ipk,ε if and only if νp(Hn,ε) = νp(an(ε))−νp(bn(ε)) >
−k.

If n < pk, then νp(Hn,ε) ≥ −νp([1, 2, . . . , n]) > −k. So n ∈ Ipk,ε. In the

following, we assume that n ≥ pk. Let

n = pkn1 + r, 0 ≤ r ≤ pk − 1, n1 ≥ 1, n1, r ∈ Z.

Write

Hn,ε =

n∑
m=1
pk-m

εm
m

+
1

pk
Hn1,δk =

c

dpk−1
+

an1
(δk)

pkbn1
(δk)

=
pcbn1

(δk) + dan1
(δk)

pkdbn1
(δk)

,

where p - d and (an1(δk), bn1(δk)) = 1.
If n1 ∈ Sp,δk , then p | an1

(δk) and p - bn1
(δk). Thus, p | pcbn1

(δk) +dan1
(δk)

and νp(p
kdbn1

(δk)) = k. So νp(Hn,ε) > −k, and then n ∈ Ipk,ε.
If n1 /∈ Sp,δk , then p - an1

(δk) and p - pcbn1
(δk)+dan1

(δk). Thus, νp(Hn,ε) ≤
−k, and then n /∈ Ipk,ε.

Therefore n ∈ Ipk,ε if and only if n1 ∈ Sp,δk ∪ {0}. This completes the proof
of Lemma 2.4. �

Lemma 2.5. Let mn be the least common multiple of 1, 2, . . . , bn1/4c and let
Tε = {n : mn - bn(ε)}. Then

Tε(x)� x

log x
.

Proof. By Lemmas 2.3 and 2.4, for any prime p and any positive integer k, we
can prove that for x ≥ pk,

Ipk,ε(x) ≤ 5s
1
3 pk

(
x

pk

) 2
3+

log(64s)
3 log p

≤ 5s
1
3 p

k
3 x

2
3+

log(64s)
3 log p ,

and for x < pk,

Ipk,ε(x) ≤ x ≤ p k3 x 2
3 ≤ 5s

1
3 p

k
3 x

2
3+

log(64s)
3 log p .

Therefore,

(2.2) Ipk,ε(x) ≤ 5s
1
3 p

k
3 x

2
3+

log(64s)
3 log p .

Similarly, by Lemmas 2.3 and 2.4 we can prove that,

(2.3) Ipk,ε(x) ≤ 2p2+k
log 3

2
log p x1−

log 3
2

log p .

For any prime p and any positive real number x with p ≤ x1/4, let αp be

the integer such that pαp ≤ x1/4 < pαp+1. By the definition of mn and Tε, we
know that

Tε(x) ≤
∑

p≤x1/4

Ipαp ,ε(x) := I1 + I2 + I3,
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where

I1 =
∑

p≤(64s)2
Ipαp ,ε(x), I2 =

∑
(64s)2<p≤x1/12

Ipαp ,ε(x), I3 =
∑

x1/12<p≤x1/4

Ipαp ,ε(x).

For I1, by (2.3) and pαp ≤ x1/4, we have

I1 =
∑

p≤(64s)2
Ipαp ,ε(x)

≤
∑

p≤(64s)2
2p2+αp

log 3
2

log p x1−
log 3

2
log p

� x1−
3
8 ·

log 3
2

log(64s)

� x

log x
.

It follows from (2.2) and pαp ≤ x1/4 that

I2 ≤
∑

(64s)2<p≤x1/12

5s
1
3 p

αp
3 x

2
3+

log(64s)
3 log p �

∑
p≤x1/12

x
1
12+

2
3+

1
6 � x

log x
.

If p > x1/12, then

x
log(64s)
3 log p = e

log(64s) log x
3 log p ≤ e

4 log(64s) log x
log x = e4 log(64s).

For I3, by (2.2) and pαp ≤ x1/4 , we have

I3 ≤
∑

x1/12<p≤x1/4

5s
1
3 p

αp
3 x

2
3+

log(64s)
3 log p �

∑
p≤x1/4

x
1
12+

2
3 � x

log x
.

Thus
I1 + I2 + I3 �

x

log x
.

Therefore,

Tε(x)� x

log x
.

This completes the proof of Lemma 2.5. �

Proof of Theorem 1.1. For any prime number p, let a0(δ1) = 0. Let

Aε = {n : bn+1(ε) = bn(ε)},

B = {n : p2 | n+ 1 for some prime p > n1/9},
C = {n : n+ 1 = pk, p | ak(δ1)ak−1(δ1) for some prime p > n1/9},

D = {n : νp(n+ 1) ≥ νp(mn) for some prime p ≤ n1/9}.
The proof is similar to Theorem 1.1 in [6]. For the readability of the paper,

we show the whole process. Let n be a positive integer with n /∈ B∪C∪D∪Tε.
Now we prove that bn+1(ε) = bn(ε). It suffices to prove that νp(bn+1(ε)) =
νp(bn(ε)) for any prime p.

Let p be a prime. We divide into the following cases:
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Case 1: p - n+ 1. Noting that

an(ε)

bn(ε)
+
εn+1

n+ 1
=
an+1(ε)

bn+1(ε)
,

we have νp(bn+1(ε)) = νp(bn(ε)).

Case 2: p | n+ 1 and p > n1/9. Let n+ 1 = pk. Since n /∈ B ∪C, it follows
that k ≥ 2 and p - kak(δ1)ak−1(δ1). Noting that p - k and

ak−1(δ1)

bk−1(δ1)
+
εk
k

=
ak(δ1)

bk(δ1)
,

we have νp(bk−1(δ1)) = νp(bk(δ1)). Since

Hn,ε=

n∑
m=1
p-m

εm
m

+
1

p
Hk−1,δ1 =

b

a
+
ak−1(δ1)

pbk−1(δ1)
=
pbbk−1(δ1) + aak−1(δ1)

pabk−1(δ1)
=
an(ε)

bn(ε)

and

Hn+1,ε =
n∑

m=1
p-m

εm
m

+
1

p
Hk,δ1 =

b

a
+

ak(δ1)

pbk(δ1)
=
pbbk(δ1) + aak(δ1)

pabk(δ1)
=
an+1(ε)

bn+1(ε)
,

where a, b are positive integers with p - a, it follows from p - kak(δ1)ak−1(δ1)
and νp(bk−1(δ1)) = νp(bk(δ1)) that

νp(bn+1(ε)) = νp(bn(ε)).

Case 3: p | n+ 1 and p ≤ n1/9. By n /∈ D ∪ Tε, we have

νp(n+ 1) < νp(mn) ≤ νp(bn(ε)).

It follows from
an(ε)

bn(ε)
+
εn+1

n+ 1
=
an+1(ε)

bn+1(ε)
,

that νp(bn+1(ε)) = νp(bn(ε)).
Up to now, we have proved that bn+1(ε) = bn(ε) for any positive integer

n /∈ B ∪ C ∪D ∪ Tε.
Now we prove that

B(x) + C(x) +D(x) + Tε(x)� x

log x
.

As in [6, Theorem 1.1], we have

B(x)� x
17
18 , D(x)� x

26
27 .

By the definition of C and Lemma 2.3 we have

C(x) ≤ C(
√
x) + 2

∑
x1/18<p≤x

Sp,δ1

(
x+ 1

p

)
+ π(x+ 1)
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�
√
x+

∑
x1/18<p≤x

(
x+ 1

p

) 2
3+

log(64s)
3 log p

+
x

log x

�
√
x+

∑
x1/18<p≤x

(
x

p

) 2
3

+
x

log x

�
√
x+

∑
p≤x

(
x

p

) 2
3

+
x

log x
.

It follows from the proof of [6, Theorem 1.1] that∑
p≤x

(
1

p

) 2
3

� x1/3

log x
,

Hence,

C(x)� x

log x
.

Therefore, it follows from Lemma 2.5 that

Aε(x) ≥ x−B(x)− C(x)−D(x)− Tε(x) ≥ x− c x

log x

for a positive constant c.
For any prime p, we have bp(ε) = pbp−1(ε). Thus p− 1 /∈ Aε for any prime

p. Hence

Aε(x) ≤ x− π(x) = x− (1 + o(1))
x

log x
.

This completes the proof of Theorem 1.1. �

Acknowledgments. We sincerely thank Professor Yong-Gao Chen for his
valuable suggestions and illuminating instruction. We are also grateful to the
referee for his/her valuable comments. The authors are supported by the Na-
tional Natural Science Foundation of China, No.11771211 and NUPTSF, Grant
No.NY220092.

References

[1] D. W. Boyd, A p-adic study of the partial sums of the harmonic series, Experiment.
Math. 3 (1994), no. 4, 287–302. http://projecteuclid.org/euclid.em/1048515811

[2] A. Eswarathasan and E. Levine, p-integral harmonic sums, Discrete Math. 91 (1991),

no. 3, 249–257. https://doi.org/10.1016/0012-365X(90)90234-9
[3] C. Sanna, On the p-adic valuation of harmonic numbers, J. Number Theory 166 (2016),

41–46. https://doi.org/10.1016/j.jnt.2016.02.020
[4] P. Shiu, The denominators of harmonic numbers, arXiv:1607.02863v1.
[5] B.-L. Wu and Y.-G. Chen, On certain properties of harmonic numbers, J. Number Theory

175 (2017), 66–86. https://doi.org/10.1016/j.jnt.2016.11.027
[6] , On the denominators of harmonic numbers, II, J. Number Theory 200 (2019),

397–406. https://doi.org/10.1016/j.jnt.2018.11.026

http://projecteuclid.org/euclid.em/1048515811
https://doi.org/10.1016/0012-365X(90)90234-9
https://doi.org/10.1016/j.jnt.2016.02.020
https://doi.org/10.1016/j.jnt.2016.11.027
https://doi.org/10.1016/j.jnt.2018.11.026


1392 B.-L. WU AND X.-H. YAN

Bing-Ling Wu

School of Science

Nanjing University of Posts and Telecommunications
Nanjing 210023, P. R. China

Email address: 390712592@qq.com

Xiao-Hui Yan

School of Mathematical Sciences and Institute of Mathematics

Nanjing Normal University
Nanjing 210023, P. R. China

and

School of Mathematics and Statistics
Anhui Normal University

Wuhu 241003, P. R. China
Email address: yanxiaohui

¯
1992@163.com


