• Title/Summary/Keyword: gun powder

Search Result 199, Processing Time 0.028 seconds

Effect of Green Tea Powder on the Improvement of Sensorial Quality of Chungkookjang (녹차첨가가 청국장의 관능적 품질 개선에 미치는 영향)

  • Kim, Jae-Hun;Kim, Sun-Im;Kim, Jong-Gun;Im, Deuk-Kyun;Park, Jin-Gyu;Lee, Ju-Woon;Byun, Myung-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.4
    • /
    • pp.482-486
    • /
    • 2006
  • This study was conducted to evaluate the effect of green tea powder on the sensorial quality of Chungkookjang. The results showed that the addition of Ttuck-cha or Ooreung-cha green tea powder was not appropriate for the fermentation of Chungkookjang. The results of sensory evaluation approved that the addition of Choi-cha or Powder-cha green tea powder reduced the off-odor of Chungkookjang. Therefore, Choi-cha and Powder-cha could be used as the effective natural additives for the improvement of the sensorial quality of Chungkookjang.

The co-effect of $TiO_2$, Cu and Ni Powders for Enhancing the Hydrogen Generation Efficiency using Plasma Technology (플라즈마 반응기의 수소발생에 미치는 $TiO_2$, Cu, Ni 촉매제 영향)

  • Park, Jae-Yoon;Kim, Jong-Suk;Jung, Jang-Gun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1599-1605
    • /
    • 2008
  • The research was conducted in order to improve the hydrogen generation efficiency of the electrical plasma technology from tap water by using $TiO_2$ photocatalyst, mixed Cu - $TiO_2$ powder, and mixed Ni - $TiO_2$ powder as the catalysts. Experiments were performed with the pulsed power and nitrogen carrier gas. The result has shown that the hydrogen concentration with the presence of $TiO_2$ powder was created higher than that of without using photocatalyst. The hydrogen concentration with using $TiO_2$ was 3012ppm corresponding to the applied voltage of 16kV, while it without using the $TiO_2$ was 1464ppm at the same condition . The effect of $TiO_2$ powder was strongly detected at the applied voltages of 15kV and 16kV. This phenomena might be resulted from the co-effect of the pulsed power discharge and the activated state of $TiO_2$ photocatalyst. The co-effect of the mixed catalysts such as Cu-$TiO_2$ and Ni-$TiO_2$ (the mixed photocatalyst $TiO_2$ and transition metals) were also investigated. The experimental results showed that, Cu and Ni powder dopants were greatly enhancing the activity of the $TiO_2$ photocatalyst. Under these experimental conditions the extremely high hydrogen concentrations at the optimal point were produced as 4089ppm and 6630ppm, respectively.

Flowability Properties of Alkali Activated Mortar (알칼리 활성 모르타르의 유동특성)

  • Lee, Gun-Young;Lee, Gun-Cheol;Park, Ji-Woong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.205-206
    • /
    • 2016
  • This study examines the effect of binding material and alkali activator on the rheology characteristics of alkali active mortar quantitatively, and a result is as follows. In the 1/2 slump flow, the higher mixing ratio of the fly ash has been shown to increase the table flow. the reason is that fly ash ball bearing action. When viewed in the consistency curve, the higher mixing ratio of the blast furnace slag powder was higher shear stress.

  • PDF

An Analysis of Human Errors in Gun Powder Jobs. (화약류작업에서 인적오류에 대한 분석)

  • 이정훈;안명석;김종현
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.97-101
    • /
    • 2004
  • The using of Gun powders are getting grower than power due to the road opening, tunnel digging, the highest building, the pound digging on the construction industry, it also happen blasting accident as well, and it become society issue more than more. In this study, The check list far the human cause of the most rate among the blasting accident was developed in availing of accident investigation chart for the analysis of the blasting accident of already developed and FTA technique analysis with the analysis systematically of blasting accident. And then, Analysis for the application was carried out in construction cite, availing of the check list. As results, The most error has broken out at charge work, an uncomfortable processes, among the blasting work. Thus, It is a matter for consideration with improvement work.

Manufacturing of W-Cu and Mo-Cu Sheet by Tape Casting Method (Tape Casting법을 이용한 W-Cu, Mo-Cu 박판소재 제조)

  • Park, Chi-Wan;Jang, Gun-Eik;Kim, Tae-Hyoung;Woo, Yong-Won
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.5
    • /
    • pp.293-298
    • /
    • 2004
  • For the application of heat sink device, the green sheets of powder of W-XCu and Mo-XCu composites were fabricated by tape casting technique. The mixing ratio of powder and binder was 6:4. The green sheet was shrinked up to 10~20% after sintering and the maximum relative density was above 95%. Thermal conductivity and Thermal expansion systematically increased with increasing Cu contents. The maximum thermal conductivity of W-20wt.%Cu was about 206[W/mK].

The Effect on the Quality Properties of Mortar by Surface Area of Waste Concrete Powder (폐콘크리트 분말의 분말도가 모르타르의 품질특성에 미치는 영향)

  • Choi, Yun-Wang;Moon, Dae-Joong;Kim, Sung-Su;Jung, Jae-Gun;Kim, Yong-Jic
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.365-368
    • /
    • 2005
  • Waste concrete powder(WCP) has been estimated with a great value-added material as by-product of waste concrete manufactured to fine and coarse aggregate for concrete, because it is able to utilized for cement clinker and concrete admixture. Experimental tests were performed as such plastic viscosity of paste, flow and compressive strength of mortar by surface area of WCP. As a result, flow and 28days compressive strength of mortar was decreased according to increased replacement ratio of WCP as compared to control mortar. Also, plastic viscosity of paste used WCP1 and WCP2 was decreased with increasing replacement ratio, but WCP3 was increased with increasing replacement ratio.

  • PDF

Effect of Gypsum Mixture on Activation of Coal Gasification Slag (석고 혼입이 석탄가스화 슬래그의 활성화에 미치는 영향)

  • Cho, Hyeon-Seo;Kim, Min-Hyouck;Lee, Gun-Cheol;Cho, Do-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.17-18
    • /
    • 2019
  • In this study, the initial strength reduction of coal gasification slag fine powders was confirmed through previous studies when used in cement formulations. It is also confirmed that the blast furnace slag is mixed with cementitious coal blast furnace slag, which is similar to coal gasification slag, to incorporate gypsum in order to prevent initial strength deterioration. In order to analyze the reactivity of coal gasification slag by desulfurization gypsum, the formation of hydrates and their reactivity at early ages were confirmed by electron microscope. In order to confirm the reactivity, the gypsum samples were prepared with unincorporated type and 2% mixed type. Experimental results showed that 2% of the desulfurized gypsum specimens reacted more actively than the uninjured ones.

  • PDF

Compressive Strength Properties of Steam-Cured Low Cement Mortar (증기양생한 저시멘트 모르타르의 압축강도 특성)

  • Yoon, Seong-Joe;Im, Geon-Woo;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.295-296
    • /
    • 2023
  • This study evaluated the compressive strength after making mortar with low cement composition for carbon-neutral steam curing to respond to climate change. Blast furnace slag, fly ash, and ultra-high powder fly ash were used as substitutes for cement. The cement substitute was used at 40% of the mass of cement, and after steam curing, the compressive strength was measured on the 1st, 3rd, 7th and 28th days of age. As a result of the experiment, at the age of 1 day, the mixture using only cement showed the highest strength, but from the 3rd day, the specimen using ultra-high powder showed a high strength development rate, followed by blast furnace slag and fly ash.

  • PDF

Planar Shock Wave Compaction of Oxidized Copper Nano Powders using High Speed Collision and Its Mechanical Properties (고속 충돌 시 발생하는 평면 충격파를 이용한 산화 나노 분말의 치밀화 및 기계적 특성 평가)

  • Ahn, Dong-Hyun;Kim, Wooyeol;Park, Lee Ju;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.39-43
    • /
    • 2014
  • Bulk nanostructured copper was fabricated by a shock compaction method using the planar shock wave generated by a single gas gun system. Nano sized powders, average diameter of 100 nm, were compacted into the capsule and target die, which were designed to eliminate the effect of undesired shock wave, and then impacted with an aluminum alloy target at 400 m/s. Microstructure and mechanical properties of the shock compact specimen were analyzed using an optical microscope (OM), scanning electron microscope (SEM), and micro indentation. Hardness results showed low values (approximately 45~80 Hv) similar or slightly higher than those of conventional coarse grained commercial purity copper. This result indicates the poor quality of bonding between particles. Images from OM and SEM also confirmed that no strong bonding was achieved between them due to the insufficient energy and surface oxygen layer of the powders.

Effect of Ball-milling on Hydrogen-reduction Behavior of WO3-CuO (WO3-CuO의 수소환원거동에 미치는 볼 밀링의 영향)

  • Kim, Dae-Gun;Shim, Woo-Seok;Kim, Young-Do
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.631-634
    • /
    • 2003
  • To fabricate W-Cu nanocomposite powder, $WO_3$-CuO powder mixture was high-energetically ball-milled and subsequently hydrogen-reduced. The effect of ball-milling on the hydrogen-reduction behavior of$ WO_3$-CuO was investigated with non-isothermal hygrometric analysis during hydrogen-reduction. Increasing the ball-milling time, the reduction peak temperatures of humidity curves were shifted to low temperature. It was considered that the reduction temperature should be decreased because the specific surface area of each oxide considerably increased with increasing the ball-milling time. In case of ball-milling for 0 h, $WO_3$and CuO were independently hydrogen-reduced and W particles were nucleated on the surface of Cu adjacent to W by CVT. However, in case of ball-milling for 50 h, the aggregates of about 200-300 nm were observed. W particles of size below 30-50 nm were homogeneously distributed with Cu in the aggregates.