Browse > Article
http://dx.doi.org/10.4150/KPMI.2014.21.1.39

Planar Shock Wave Compaction of Oxidized Copper Nano Powders using High Speed Collision and Its Mechanical Properties  

Ahn, Dong-Hyun (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH))
Kim, Wooyeol (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH))
Park, Lee Ju (Agency for Defense Development (ADD))
Kim, Hyoung Seop (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH))
Publication Information
Journal of Powder Materials / v.21, no.1, 2014 , pp. 39-43 More about this Journal
Abstract
Bulk nanostructured copper was fabricated by a shock compaction method using the planar shock wave generated by a single gas gun system. Nano sized powders, average diameter of 100 nm, were compacted into the capsule and target die, which were designed to eliminate the effect of undesired shock wave, and then impacted with an aluminum alloy target at 400 m/s. Microstructure and mechanical properties of the shock compact specimen were analyzed using an optical microscope (OM), scanning electron microscope (SEM), and micro indentation. Hardness results showed low values (approximately 45~80 Hv) similar or slightly higher than those of conventional coarse grained commercial purity copper. This result indicates the poor quality of bonding between particles. Images from OM and SEM also confirmed that no strong bonding was achieved between them due to the insufficient energy and surface oxygen layer of the powders.
Keywords
Nano powder; Microhardness; Shock wave; Compaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. A. Meyers, A. Mishra, D. J. Benson, Biomaterials, Prog. Mater. Sci., 51 (2006) 427.   DOI   ScienceOn
2 H. Chang, J. Hfler, C. Altstetter and R. Averback, Mater. Sci. Eng. A, 153 (1992) 676.   DOI   ScienceOn
3 M. Jain and T. Christman, Acta Metall. Mater., 42 (1994) 1901.   DOI   ScienceOn
4 A. P. Zhilyaev, G. V. Nurislamova, B.-K. Kim, M. D. Bar, J. A. Szpunar and T. G. Langdon, Acta Mater., 51 (2003) 753.   DOI   ScienceOn
5 S. G. Pyo, N. J. Kim and P. Nash, Mat. Sci. Eng. A, 181 (1994) 1169.
6 G. R. Haff and E. M. Schulson, Metall. Trans. A, 13A (1982) 1563.
7 H. N. Kim, S. N. Chang and D. K. Kim, Scripta Mater., 61 (2009) 871.   DOI   ScienceOn
8 T. Chen, J. M. Hampikian and N. N. Thadhani. Acta. Mater, 47 (1999) 2567.   DOI   ScienceOn
9 Z. Horita, T. Fujinami and T. G. Langdon, Mat. Sci. Eng. A, 318 (2001) 34.   DOI   ScienceOn
10 Z. Q. Jin, K. H. Chen, J. Li, H. Zeng, S.-F. Cheng, J. P. Liu, Z. L. Wang and N. N. Thadhani, Acta Mater., 52 (2004) 2147.   DOI   ScienceOn
11 Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon, Acta Mater., 46 (1998) 3317.   DOI   ScienceOn