DOI QR코드

DOI QR Code

Planar Shock Wave Compaction of Oxidized Copper Nano Powders using High Speed Collision and Its Mechanical Properties

고속 충돌 시 발생하는 평면 충격파를 이용한 산화 나노 분말의 치밀화 및 기계적 특성 평가

  • Ahn, Dong-Hyun (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Kim, Wooyeol (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Park, Lee Ju (Agency for Defense Development (ADD)) ;
  • Kim, Hyoung Seop (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH))
  • 안동현 (포항공과대학교 신소재공학과) ;
  • 김우열 (포항공과대학교 신소재공학과) ;
  • 박이주 (국방과학연구소) ;
  • 김형섭 (포항공과대학교 신소재공학과)
  • Received : 2013.12.30
  • Accepted : 2014.01.21
  • Published : 2014.02.28

Abstract

Bulk nanostructured copper was fabricated by a shock compaction method using the planar shock wave generated by a single gas gun system. Nano sized powders, average diameter of 100 nm, were compacted into the capsule and target die, which were designed to eliminate the effect of undesired shock wave, and then impacted with an aluminum alloy target at 400 m/s. Microstructure and mechanical properties of the shock compact specimen were analyzed using an optical microscope (OM), scanning electron microscope (SEM), and micro indentation. Hardness results showed low values (approximately 45~80 Hv) similar or slightly higher than those of conventional coarse grained commercial purity copper. This result indicates the poor quality of bonding between particles. Images from OM and SEM also confirmed that no strong bonding was achieved between them due to the insufficient energy and surface oxygen layer of the powders.

Keywords

References

  1. M. A. Meyers, A. Mishra, D. J. Benson, Biomaterials, Prog. Mater. Sci., 51 (2006) 427. https://doi.org/10.1016/j.pmatsci.2005.08.003
  2. H. Chang, J. Hfler, C. Altstetter and R. Averback, Mater. Sci. Eng. A, 153 (1992) 676. https://doi.org/10.1016/0921-5093(92)90269-7
  3. M. Jain and T. Christman, Acta Metall. Mater., 42 (1994) 1901. https://doi.org/10.1016/0956-7151(94)90015-9
  4. Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon, Acta Mater., 46 (1998) 3317. https://doi.org/10.1016/S1359-6454(97)00494-1
  5. Z. Horita, T. Fujinami and T. G. Langdon, Mat. Sci. Eng. A, 318 (2001) 34. https://doi.org/10.1016/S0921-5093(01)01339-9
  6. A. P. Zhilyaev, G. V. Nurislamova, B.-K. Kim, M. D. Bar, J. A. Szpunar and T. G. Langdon, Acta Mater., 51 (2003) 753. https://doi.org/10.1016/S1359-6454(02)00466-4
  7. S. G. Pyo, N. J. Kim and P. Nash, Mat. Sci. Eng. A, 181 (1994) 1169.
  8. G. R. Haff and E. M. Schulson, Metall. Trans. A, 13A (1982) 1563.
  9. H. N. Kim, S. N. Chang and D. K. Kim, Scripta Mater., 61 (2009) 871. https://doi.org/10.1016/j.scriptamat.2009.07.017
  10. T. Chen, J. M. Hampikian and N. N. Thadhani. Acta. Mater, 47 (1999) 2567. https://doi.org/10.1016/S1359-6454(99)00059-2
  11. Z. Q. Jin, K. H. Chen, J. Li, H. Zeng, S.-F. Cheng, J. P. Liu, Z. L. Wang and N. N. Thadhani, Acta Mater., 52 (2004) 2147. https://doi.org/10.1016/j.actamat.2004.01.006

Cited by

  1. Analysis of the Change in Microstructures of Nano Copper Powders During the Hydrogen Reduction using X-ray Diffraction Patterns and Transmission Electron Microscope, and the Mechanical Property of Compacted Powders vol.21, pp.3, 2014, https://doi.org/10.4150/KPMI.2014.21.3.207
  2. Compressibility of hierarchic-architectured agglomerates of hydrogen-reduced copper nanopowders vol.51, pp.1, 2016, https://doi.org/10.1007/s10853-015-9414-1