• Title/Summary/Keyword: graphite anodes

Search Result 43, Processing Time 0.024 seconds

Development of Petroleum-Based Carbon Composite Materials Containing Graphite/silicon Particles and Their Application to Lithium Ion Battery Anodes

  • Noh, Soon-Young;Kim, Young-Hoon;Lee, Chul-Wee;Yoon, Song-Hun
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.116-123
    • /
    • 2011
  • Herein, a novel preparation method of highly homogeneous carbon-silicon composite materials was presented. In contrast to conventional solvent evaporation method, a milled silicon-graphite or its oxidized material were directly reacted with petroleum-derived pitch precursor. After thermal reaction under high pressure, pitch-graphite-silicon composite was prepared. Carbon-graphite-silicon composite were prepared by an air-oxidization and following carbonization. From energy dispersive spectroscopy, it was observed that small Si particles were highly embedded within carbon, which was confirmed by disappearance of Si peaks in Raman spectra. Furthermore, X-ray diffraction and Raman spectra revealed that carbon crystallinity decreased when the strongly oxidized silicon-graphite was added, which was probably due to oxygen-induced cross-linking. From the anode application in lithium ion batteries, carbon-graphite-silicon composite anode displayed a high capacity ($565\;mAh\;g^{-1}$), a good initial efficiency (68%) and an good cyclability (88% retention at 50 cycles), which were attributed to the high dispersion of Si particles within cabon. In case of the strongly oxidized silicongraphite addtion, a decrease of reversible capacity was observed due to its low crystallinity.

Cycling Behavior of Binder-Free Graphite-Lithium Intercalation Anode In AICI3-EMIC-LiCI-SOCI2 Room-Temperature Molten Salt

  • Koura, Nobuyuki;Minami, Takuto;Etoh, Keiko;Idemoto, Yasushi;Matsumoto, Futoshi
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.178-182
    • /
    • 2002
  • The electrochemical behavior of binder-free carbon anode, comprising of only artificial and natural graphite (AG and NG) particles, for intercalation and deintercalation of lithium ion $(Li^+)$ in aluminum chloride (AICI_3)-I-ethyl­3-methylimidazolium chloride (EMIC)-lithium chloride (LiCl)-thionyl chloride $(SOCI_2)$ room-temperature molten salt (RTMS) was studied. Binder-free carbon electrodes were fabricated using electrophoretic deposition (EPD) method. The binder-free carbon anodes provided a relatively flat charge and discharge potentials $(0\;to\;0.2V\;vs.\;Li/Li^+)$ and current capabilities $(250-340mAh{\cdot}g^{-1})$ for the intercalation and deintercalation of $Li^+$. Stability of the binder-free carbon anodes for intercalation and deintercalation of 50 cycles was confirmed.

Preparation and Characteristics of Core-Shell Structure with Nano Si/Graphite Nanosheets Hybrid Layers Coated on Spherical Natural Graphite as Anode Material for Lithium-ion Batteries

  • Kwon, Hae-Jun;Son, Jong-In;Lee, Sung-Man
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.74-81
    • /
    • 2021
  • Silicon (Si) is recognized as a promising anode material for high-energy-density lithium-ion batteries. However, under a condition of electrode comparable to commercial graphite anodes with low binder content and a high electrode density, the practical use of Si is limited due to the huge volume change associated with Si-Li alloying/de-alloying. Here, we report a novel core-shell composite, having a reversible capacity of ~ 500 mAh g-1, by forming a shell composed of a mixture of nano-Si, graphite nanosheets and a pitch carbon on a spherical natural graphite particle. The electrochemical measurements are performed using electrodes with 2 wt % styrene butadiene rubber (SBR) and 2 wt.% carboxymethyl cellulose (CMC) binder in an electrode density of ~ 1.6 g cm-3. The core-shell composites having the reversible capacity of 478 mAh g-1 shows the outstanding capacity retention of 99% after 100 cycles with the initial coulombic efficiency of 90%. The heterostructure of core-shell composites appears to be very effective in buffering the volume change of Si during cycling.

Electrochemical Properties of Li1.1V0.75W0.075Mo0.075O2/Graphite Composite Anodes for Lithium-ion Batteries

  • Kim, Hyung-Sun;Kim, Sang-Ok;Kim, Yong-Tae;Jung, Ji-Kwon;Na, Byung-Ki;Lee, Joong-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.65-68
    • /
    • 2012
  • Novel type $Li_{1.1}V_{0.9-2x}W_xMo_xO_2$ powders were prepared by a solid-state reaction of $Li_2CO_3$, $V_2O_3$, $WO_2$ and $MoO_2$ precursors in a nitrogen atmosphere containing 10 mol % hydrogen gas, and assessed as anode materials in lithium-ion batteries. The specific charge and discharge capacities of the $Li_{1.1}V_{0.9-2x}W_xMo_xO_2$ anodes were higher than those of the bare $Li_{1.1}V_{0.9}O_2$ anode. The cyclic efficiency of these anodes was approximately 73.3% at the first cycle, regardless of the presence of W and Mo doping. The composite anode, which was composed of $Li_{1.1}V_{0.75}W_{0.075}Mo_{0.075}O_2$ (20 wt %) and natural graphite (80 wt %), demonstrated reasonable specific capacity, high cyclic efficiency, and good cycling performance, even at high rates without capacity fading.

Electricity Production by Metallic and Carbon Anodes Immersed in an Estuarine Sediment (퇴적토에 담지된 금속 및 탄소전극에 의한 전기 생산 특성)

  • Song, Hyung-Jin;Rhee, In-Hyoung;Kwon, Sung-Hyun;Cho, Dae-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3731-3739
    • /
    • 2009
  • One-chambered sediment cells with a variety of anodic electrodes were tested for generation of electricity. Material used for anodes was iron, brass, zinc/iron, copper and graphite felt which was used for a common cathode. The estuarine sediment served as supplier of oxidants or electron-producing microbial habitat which evoked electrons via fast metal corrosion reactions or a complicated microbial electron transfer mechanism, respectively. Maximum power density and current density were found to be $6.90\;W/m^2$ (iron/zinc) and $7.76\;A/m^2$ (iron), respectively. Interestingly, copper wrapped with carbon cloth produced better electric performance than copper only, by 60%, possibly because the cloth not only prevented rapid corrosion on the copper surface by some degrees, but also helped growing some electron-emitting microbes on its surface. At anodes oxidation reduction potential(ORP) was kept to be stationary over time except at the very initial period. The pH reduction in the copper and copper/carbon electrodes could be a sign of organic acid production due to a chemical change in the sediment. The simple estimation of interfacial, electrical resistances of electrodes and electrolyte in the sediment cell that a key to the electricity generation should be in how to control corrosion rate or microbial electron transfer activity.

Performance of Expanded Graphite as Anode Materials for High Power Li-ion Secondary Batteries

  • Park, Do-Youn;Lim, Yun-Soo;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.343-346
    • /
    • 2010
  • The various expanded graphites (EGs) was prepared and applied as anode material for high power Li-ion secondary battery (LIB). By changing the processing conditions of EG, a series of EG with different structure were produced, showing the changed electrochemical properties. The charge-discharge test showed that the initial reversible capacity of EG anodes prepared at the suitable conditions was over 400 mAh/g and the charge capacity at 5 C-rate was 83.2 mAh/g. These values demonstrated the much improved electrochemical properties as compared with those for the graphite anode of 360 mAh/g and 19.4 mAh/g, respectively, showing the possibility of EG anode materials for high power LIB.

Characteristics of Electricity Production by Metallic and Non-metallic Anodes Immersed in Mud Sediment Using Sediment Microbial Fuel Cell

  • Haque, Niamul;Cho, Dae-Chul;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.23 no.10
    • /
    • pp.1745-1753
    • /
    • 2014
  • Sediment microbial fuel cell (SMFC), equipped with Zn, Al, Cu, Fe or graphite felt (GF) anode and marine sediment, was performed. Graphite felt was used as a common cathode. SMFC was single chambered and did not use any redox mediator. The aim of this work was to find efficient anodic material. Oxidation reduction potential (ORP), cell voltage, current density, power density, pH and chemical oxygen demand (COD) were measured for SMFC's performance.. The order of maximum power density was $913mWm^{-2}$ for Zn, $646mWm^{-2}$ for Fe, $387.8mWm^{-2}$ for Cu, $266mWm^{-2}$ for Al, and $127mWm^{-2}$ for graphite felt (GF). The current density over voltage was found to be strongly correlated with metal electrodes, but the graphite felt electrode, in which relatively weaker electricity was observed because of its bio-oriented mechanism. Metal corrosion reactions and/or a complicated microbial electron transfer mechanism acting around the anodic compartment may facilitate to generate electricity. We presume that more sophisticated selection of anodic material can lead to better performance in SMFC.

Chemical Prelithiation Toward Lithium-ion Batteries with Higher Energy Density (리튬이온전지 고에너지밀도 구현을 위한 화학적 사전리튬화 기술)

  • Hong, Jihyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.77-92
    • /
    • 2021
  • The energy density of lithium-ion batteries (LIBs) determines the mileage of electric vehicles. For increasing the energy density of LIBs, it is necessary to develop high-capacity active materials that can store more lithium ions within constrained weight. The rapid progress made in cathode technology has realized the utilization of the near-theoretical capacity of cathode materials. In contrast, commercial LIBs have still exploited graphite as active material in anodes since the 1990s. The most promising way to increase anodes' capacity is to mix high-capacity and long-cycle-life silicon oxides (SiOx) with graphite. However, the low initial Coulombic efficiency (ICE) of SiOx limits its content below 15 wt%, impeding the capacity increase in anodes. To address this issue, various prelithiation techniques have been proposed, which can improve the ICE of high-capacity anode materials. In this review paper, we introduce the principles and expected effects of prelithiation techniques reported so far. According to the reaction mechanisms, the strategies are categorized. Mainly, we focus on the recent progress of solution-based chemical prelithiation methods with commercial viability, of which lithiation reaction occurs homogeneously at liquid-solid interfaces. We believe that developing a cost-effective and mass-scalable prelithiation process holds the key to dominating the anode market for next-generation LIBs.

Cross-linkable Waterborne Polyurethane based on Castor Oil as an Efficient Binder for Silicon Anodes (실리콘 음극용 효과적인 바인더로서 가교결합이 가능한 캐스터 오일 기반의 수분산 폴리우레탄)

  • Lee, Yong Hun;Kim, Eunji;Lee, Jin Hong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.607-612
    • /
    • 2021
  • Silicon (Si) is one of the promising active materials to replace the widely used graphite because of its low electrochemical potential and high theoretical capacity. However, Si anodes still face in problems with the huge volume expansion and continuous decomposition of the electrolyte during repeated charge and discharge processes. To address these issues, a cross-linkable waterborne polyurethane (CWPU) based on a bio-oil, castor oil, was prepared and reacted with Tris(2,3-epoxypropyl) isocyanurate (TGIC) linkers, resulting in the formation of a mechanically robust 3D network structure. Si anodes fabricated with the CWPU-TGIC exhibited stable cycling performances and excellent discharge capacities. The results revealed that the CWPU-TGIC binder efficiently accommodates the large volume change for Si anode during charge and discharge cycles. Overall, the eco-friendly binder shows great promise in improving the electrochemical performances of Si anodes.

Electrochemical Characteristics of Metal Coated Graphite for Anodic Active Material of Lithium Secondary Battery (금속 코팅된 흑연 입자로 제조된 전극의 전기화학적 특성)

  • Choi, Won-Chang;Lee, Joong-Kee;Byun, Dong-Jin;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.103-112
    • /
    • 2003
  • Various kinds of metals were coated on synthetic graphite in order to investigate the relationship between film characteristics and their electrochemical performance. Gas suspension spray coating method was employed for the coating of synthetic graphite. In our experimental range, all of the metal coated synthetic graphite showed the higher capacity than that of raw material at high C-rate mainly due to decrease in impedance of passivation film. In cyclic voltammetry experiments, silver-coated and tin-coated graphite anodes found the lithium-alloy reaction. Considering smaller amount of metal coating, the most increase in discharge capacity was caused by improvement of conductivity of the electrode. When single-component metal was coated, silver-coated graphite anode exhibited the highest discharge capacity and better cycleability. Double components of silver-nickel coated active material showed the highest discharge capacity, rate capability and the best cycle performance in the range of our experiments.