DOI QR코드

DOI QR Code

Chemical Prelithiation Toward Lithium-ion Batteries with Higher Energy Density

리튬이온전지 고에너지밀도 구현을 위한 화학적 사전리튬화 기술

  • Hong, Jihyun (Korea Institute of Science and Technology (KIST))
  • 홍지현 (한국과학기술연구원 (KIST) 청정신기술연구본부에너지소재연구센터)
  • Received : 2021.08.05
  • Accepted : 2021.09.09
  • Published : 2021.11.30

Abstract

The energy density of lithium-ion batteries (LIBs) determines the mileage of electric vehicles. For increasing the energy density of LIBs, it is necessary to develop high-capacity active materials that can store more lithium ions within constrained weight. The rapid progress made in cathode technology has realized the utilization of the near-theoretical capacity of cathode materials. In contrast, commercial LIBs have still exploited graphite as active material in anodes since the 1990s. The most promising way to increase anodes' capacity is to mix high-capacity and long-cycle-life silicon oxides (SiOx) with graphite. However, the low initial Coulombic efficiency (ICE) of SiOx limits its content below 15 wt%, impeding the capacity increase in anodes. To address this issue, various prelithiation techniques have been proposed, which can improve the ICE of high-capacity anode materials. In this review paper, we introduce the principles and expected effects of prelithiation techniques reported so far. According to the reaction mechanisms, the strategies are categorized. Mainly, we focus on the recent progress of solution-based chemical prelithiation methods with commercial viability, of which lithiation reaction occurs homogeneously at liquid-solid interfaces. We believe that developing a cost-effective and mass-scalable prelithiation process holds the key to dominating the anode market for next-generation LIBs.

전기자동차의 주행거리는 리튬이온전지의 에너지 밀도에 의해 결정된다. 리튬이온전지의 에너지 밀도 향상을 위해서는 단위 질량 당 많은 양의 리튬 이온을 저장할 수 있는 고용량 활물질 소재 개발이 필수적이다. 양극 기술의 급속한 발전은 이론적으로 구현 가능한 최대 용량에 근접한 수준의 가역 용량을 활용할 수 있는 수준에 이르렀다. 반면 음극은 90년대에 도입된 흑연을 현재까지도 주요 활물질로 활용하는데 머무르고 있다. 음극의 용량을 증가시키는 방법으로 고용량-장수명 특성을 지닌 실리콘 산화물 활물질을 음극에 첨가하는 방식이 가장 유력하게 검토되고 있다. 그러나 실리콘 산화물의 낮은 초기 쿨롱 효율은 음극 내 실리콘 산화물의 함량을 15% 이내로 제한하여 음극 용량 증가에 걸림돌이 되고 있다. 이에 따라 실리콘 산화물 등 고용량 음극의 초기 효율을 개선할 수 있는 사전리튬화 기술이 점점 많은 주목을 받고 있다. 본 리뷰논문에서는 사전리튬화 기술의 개념 및 효과에 대해 설명하고 현재까지 개발된 사전리튬화 기술을 반응 방식에 따라 분류하여 소개한다. 특히, 리튬화 반응의 균질성이 높고 대량 양산에 강점을 지닌 용액 기반 화학적 사전리튬화 기술의 최신 개발 동향을 집중적으로 소개하였다. 상용화가 가능한 사전리튬화 기술 개발이 가까운 미래의 차세대 리튬이온전지 음극재 시장의 주도권 확보의 핵심 조건이 될 것으로 기대한다.

Keywords

Acknowledgement

본 연구는 한국과학기술연구원 기관고유과제(과제번호 2E30993)의 지원을 받아 수행되었음. 본 연구는 과학기술정보통신부(MSIT) 한국연구재단(NRF) 우수신진연구(과제번호 2021R1C1C1006721)의 지원을 받아 수행되었음.

References

  1. Axsen, J.; Plotz, P.; Wolinetz, M., Crafting strong, integrated policy mixes for deep CO2 mitigation in road transport. Nat. Clim. Change 2020, 10, 809. https://doi.org/10.1038/s41558-020-0877-y
  2. Choi, J. W.; Aurbach, D., Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 2016, 1, 16013. https://doi.org/10.1038/natrevmats.2016.13
  3. Hong, J.; Gent, W. E.; Xiao, P.; Lim, K.; Seo, D.-H.; Wu, J.; Csernica, P. M.; Takacs, C. J.; Nordlund, D.; Sun, C.-J.; Stone, K. H.; Passarello, D.; Yang, W.; Prendergast, D.; Ceder, G.; Toney, M. F.; Chueh, W. C., Metal-oxygen decoordination stabilizes anion redox in Li-rich oxides. Nature Materials 2019, 18(3), 256-265. https://doi.org/10.1038/s41563-018-0276-1
  4. Zheng, J.; Lochala, J. A.; Kwok, A.; Deng, Z. D.; Xiao, J., Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications. Advanced Science 2017, 4, 1700032. https://doi.org/10.1002/advs.201700032
  5. Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z., Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5, 1042. https://doi.org/10.1038/nchem.1802
  6. Jia, H.; Zou, L.; Gao, P.; Cao, X.; Zhao, W.; He, Y.; Engelhard, M. H.; Burton, S. D.; Wang, H.; Ren, X.; Li, Q.; Yi, R.; Zhang, X.; Wang, C.; Xu, Z.; Li, X.; Zhang, J. G.; Xu, W., High-Performance Silicon Anodes Enabled By Nonflammable Localized High-Concentration Electrolytes. Adv. Energy Mater. 2019, 9, 1900784. https://doi.org/10.1002/aenm.201900784
  7. Shen, D.; Huang, C.; Gan, L.; Liu, J.; Gong, Z.; Long, M., Rational Design of Si@SiO2/C Composites Using Sustainable Cellulose as a Carbon Resource for Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2018, 10(9), 7946-7954. https://doi.org/10.1021/acsami.7b16724
  8. Liu, Z.; Yu, Q.; Zhao, Y.; He, R.; Xu, M.; Feng, S.; Li, S.; Zhou, L.; Mai, L., Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 2019, 48, 285. https://doi.org/10.1039/c8cs00441b
  9. Lu, W.; Zhou, X.; Liu, Y.; Zhu, L., Crack-Free Silicon Monoxide as Anodes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12(51), 57141. https://doi.org/10.1021/acsami.0c18321
  10. Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D., The success story of graphite as a lithium-ion anode material - fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustainable Energy & Fuels 2020, 4(11), 5387-5416. https://doi.org/10.1039/D0SE00175A
  11. Placke, T.; Kloepsch, R.; Duhnen, S.; Winter, M., Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. Journal of Solid State Electrochemistry 2017, 21(7), 1939-1964. https://doi.org/10.1007/s10008-017-3610-7
  12. Choi, J.; Jeong, H.; Jang, J.; Jeon, A. R.; Kang, I.; Kwon, M.; Hong, J.; Lee, M., Weakly Solvating Solution Enables Chemical Prelithiation of Graphite-SiOx Anodes for High-Energy Li-Ion Batteries. Journal of the American Chemical Society 2021, 143(24), 9169-9176. https://doi.org/10.1021/jacs.1c03648
  13. Holtstiege, F.; Barmann, P.; Nolle, R.; Winter, M.; Placke, T., Pre-Lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges. Batteries 2018, 4, 4. https://doi.org/10.3390/batteries4010004
  14. Jang, J.; Kang, I.; Choi, J.; Jeong, H.; Yi, K.-W.; Hong, J.; Lee, M., Molecularly Tailored Lithium-Arene Complex Enables Chemical Prelithiation of High-Capacity Lithium-Ion Battery Anodes. Angewandte Chemie International Edition 2020, 59(34), 14473-14480. https://doi.org/10.1002/anie.202002411
  15. Li, X.; Sun, X.; Hu, X.; Fan, F.; Cai, S.; Zheng, C.; Stucky, G. D., Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries. Nano Energy 2020, 77, 105143. https://doi.org/10.1016/j.nanoen.2020.105143
  16. Zhang, F.; Yang, J., Boosting initial coulombic efficiency of Si-based anodes: a review. Emergent Materials 2020, 3, 369. https://doi.org/10.1007/s42247-020-00080-7
  17. Zou, K.; Deng, W.; Cai, P.; Deng, X.; Wang, B.; Liu, C.; Li, J.; Hou, H.; Zou, G.; Ji, X., Prelithiation/Presodiation Techniques for Advanced Electrochemical Energy Storage Systems: Concepts, Applications, and Perspectives. Adv. Funct. Mater. 2021, 31, 2005581. https://doi.org/10.1002/adfm.202005581
  18. de la Llave, E.; Borgel, V.; Park, K.-J.; Hwang, J.-Y.; Sun, Y.-K.; Hartmann, P.; Chesneau, F.-F.; Aurbach, D., Comparison between Na-Ion and Li-Ion Cells: Understanding the Critical Role of the Cathodes Stability and the Anodes Pretreatment on the Cells Behavior. ACS Applied Materials & Interfaces 2016, 8(3), 1867-1875. https://doi.org/10.1021/acsami.5b09835
  19. Zhao, J.; Lu, Z.; Wang, H.; Liu, W.; Lee, H. W.; Yan, K.; Zhuo, D.; Lin, D.; Liu, N.; Cui, Y., Artificial Solid Electrolyte Interphase-Protected LixSi Nanoparticles: An Efficient and Stable Prelithiation Reagent for Lithium-Ion Batteries. J. Am. Chem. Soc. 2015, 137, 8372. https://doi.org/10.1021/jacs.5b04526
  20. Ai, G.; Wang, Z.; Zhao, H.; Mao, W.; Fu, Y.; Yi, R.; Gao, Y.; Battaglia, V.; Wang, D.; Lopatin, S.; Liu, G., Scalable process for application of stabilized lithium metal powder in Li-ion batteries. Journal of Power Sources 2016, 309, 33-41. https://doi.org/10.1016/j.jpowsour.2016.01.061
  21. Forney, M. W.; Ganter, M. J.; Staub, J. W.; Ridgley, R. D.; Landi, B. J., Prelithiation of Silicon-Carbon Nanotube Anodes for Lithium Ion Batteries by Stabilized Lithium Metal Powder (SLMP). Nano Letters 2013, 13(9), 4158-4163. https://doi.org/10.1021/nl401776d
  22. Pan, Q.; Zuo, P.; Mu, T.; Du, C.; Cheng, X.; Ma, Y.; Gao, Y.; Yin, G., Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder. Journal of Power Sources 2017, 347, 170-177. https://doi.org/10.1016/j.jpowsour.2017.02.061
  23. Wang, Z.; Fu, Y.; Zhang, Z.; Yuan, S.; Amine, K.; Battaglia, V.; Liu, G., Application of Stabilized Lithium Metal Powder (SLMP®) in graphite anode - A high efficient prelithiation method for lithium-ion batteries. Journal of Power Sources 2014, 260, 57-61. https://doi.org/10.1016/j.jpowsour.2014.02.112
  24. Meng, Q.; Li, G.; Yue, J.; Xu, Q.; Yin, Y. X.; Guo, Y. G., High-Performance Lithiated SiOx Anode Obtained by a Controllable and Efficient Prelithiation Strategy. ACS Appl. Mater. Interfaces 2019, 11, 32062. https://doi.org/10.1021/acsami.9b12086
  25. Xu, H.; Li, S.; Zhang, C.; Chen, X.; Liu, W.; Zheng, Y.; Xie, Y.; Huang, Y.; Li, J., Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries. Energy & Environmental Science 2019, 12(10), 2991-3000. https://doi.org/10.1039/C9EE01404G
  26. Zhao, J.; Sun, J.; Pei, A.; Zhou, G.; Yan, K.; Liu, Y.; Lin, D.; Cui, Y., A general prelithiation approach for group IV elements and corresponding oxides. Energy Storage Materials 2018, 10, 275. https://doi.org/10.1016/j.ensm.2017.06.013
  27. Domi, Y.; Usui, H.; Iwanari, D.; Sakaguchi, H., Effect of Mechanical Pre-Lithiation on Electrochemical Performance of Silicon Negative Electrode for Lithium-Ion Batteries. Journal of The Electrochemical Society 2017, 164(7), A1651-A1654. https://doi.org/10.1149/2.1361707jes
  28. Kim, H. J.; Choi, S.; Lee, S. J.; Seo, M. W.; Lee, J. G.; Deniz, E.; Lee, Y. J.; Kim, E. K.; Choi, J. W., Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full Cells. Nano Lett. 2016, 16, 282. https://doi.org/10.1021/acs.nanolett.5b03776
  29. Nayak, P. K.; Penki, T. R.; Markovsky, B.; Aurbach, D., Electrochemical Performance of Li- and Mn-Rich Cathodes in Full Cells with Prelithiated Graphite Negative Electrodes. ACS Energy Letters 2017, 2(3), 544-548. https://doi.org/10.1021/acsenergylett.7b00007
  30. Shen, Y.; Qian, J.; Yang, H.; Zhong, F.; Ai, X., Chemically Prelithiated Hard-Carbon Anode for High Power and High Capacity Li-Ion Batteries. Small 2020, 16(7), 1907602. https://doi.org/10.1002/smll.201907602
  31. Shen, Y.; Zhang, J.; Pu, Y.; Wang, H.; Wang, B.; Qian, J.; Cao, Y.; Zhong, F.; Ai, X.; Yang, H., Effective Chemical Prelithiation Strategy for Building a Silicon/Sulfur Li-Ion Battery. ACS Energy Letters 2019, 4(7), 1717-1724. https://doi.org/10.1021/acsenergylett.9b00889
  32. Wang, G.; Li, F.; Liu, D.; Zheng, D.; Luo, Y.; Qu, D.; Ding, T.; Qu, D., Chemical Prelithiation of Negative Electrodes in Ambient Air for Advanced Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 8699. https://doi.org/10.1021/acsami.8b19416
  33. Zhang, X.; Qu, H.; Ji, W.; Zheng, D.; Ding, T.; Qiu, D.; Qu, D., An electrode-level prelithiation of SiO anodes with organolithium compounds for lithium-ion batteries. Journal of Power Sources 2020, 478, 229067. https://doi.org/10.1016/j.jpowsour.2020.229067
  34. Jezowski, P.; Crosnier, O.; Deunf, E.; Poizot, P.; Beguin, F.; Brousse, T., Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. Nat. Mater. 2018, 17, 167. https://doi.org/10.1038/nmat5029
  35. Sun, Y.; Lee, H. W.; Seh, Z. W.; Liu, N.; Sun, J.; Li, Y.; Cui, Y., High-capacity battery cathode prelithiation to offset initial lithium loss. Nature Energy 2016, 1, 15008. https://doi.org/10.1038/nenergy.2015.8
  36. Marinaro, M.; Weinberger, M.; Wohlfahrt-Mehrens, M., Toward pre-lithiatied high areal capacity silicon anodes for Lithium-ion batteries. Electrochimica Acta 2016, 206, 99-107. https://doi.org/10.1016/j.electacta.2016.03.139
  37. Zhao, J.; Lee, H.-W.; Sun, J.; Yan, K.; Liu, Y.; Liu, W.; Lu, Z.; Lin, D.; Zhou, G.; Cui, Y., Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility. Proceedings of the National Academy of Sciences 2016, 113(27), 7408-7413. https://doi.org/10.1073/pnas.1603810113
  38. Zhao, J.; Lu, Z.; Liu, N.; Lee, H.-W.; McDowell, M. T.; Cui, Y., Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents. Nature Communications 2014, 5 (1), 5088. https://doi.org/10.1038/ncomms6088
  39. Wang, F.; Wang, B.; Li, J.; Wang, B.; Zhou, Y.; Wang, D.; Liu, H.; Dou, S., Prelithiation: A Crucial Strategy for Boosting the Practical Application of Next-Generation Lithium Ion Battery. ACS Nano 2021, 15 (2), 2197-2218. https://doi.org/10.1021/acsnano.0c10664
  40. Canters, G. W.; de Boer, E., Alkali N.M.R. experiments on the radical ion pairs of biphenyl and fluorenone. Mol. Phys. 1973, 26, 1185. https://doi.org/10.1080/00268977300102401
  41. Takeshita, T.; Hirota, N., Alkali metal NMR studies of radical anion solutions. J. Chem. Phys. 1973, 58, 3745. https://doi.org/10.1063/1.1679727
  42. Peeks, M. D.; Claridge, T. D. W.; Anderson, H. L., Aromatic and antiaromatic ring currents in a molecular nanoring. Nature 2017, 541, 200. https://doi.org/10.1038/nature20798
  43. Wiberg, K. B., Antiaromaticity in Monocyclic Conjugated Carbon Rings. Chem. Rev. 2001, 101, 1317. https://doi.org/10.1021/cr990367q
  44. Yan, M.-Y.; Li, G.; Zhang, J.; Tian, Y.-F.; Yin, Y.-X.; Zhang, C.-J.; Jiang, K.-C.; Xu, Q.; Li, H.-L.; Guo, Y.-G., Enabling SiOx/C Anode with High Initial Coulombic Efficiency through a Chemical Pre-Lithiation Strategy for High-Energy-Density Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2020, 12 (24), 27202-27209. https://doi.org/10.1021/acsami.0c05153
  45. Chae, S.; Choi, S. H.; Kim, N.; Sung, J.; Cho, J., Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries. Angew. Chem., Int. Ed. 2020, 59, 110. https://doi.org/10.1002/anie.201902085
  46. Li, P.; Hwang, J. Y.; Sun, Y. K., Nano/Microstructured Silicon-Graphite Composite Anode for High-Energy-Density Li-Ion Battery. ACS Nano 2019, 13, 2624. https://doi.org/10.1021/acsnano.9b00169
  47. Li, P.; Kim, H.; Myung, S. T.; Sun, Y. K., Diverting Exploration of Silicon Anode into Practical Way: A Review Focused on Silicon-Graphite Composite for Lithium Ion Batteries. Energy Storage Materials 2021, 35, 550. https://doi.org/10.1016/j.ensm.2020.11.028
  48. Kim, H.; Hong, J.; Yoon, G.; Kim, H.; Park, K.-Y.; Park, M.-S.; Yoon, W.-S.; Kang, K., Sodium intercalation chemistry in graphite. Energy & Environmental Science 2015, 8 (10), 2963-2969. https://doi.org/10.1039/c5ee02051d
  49. Ming, J.; Cao, Z.; Wahyudi, W.; Li, M.; Kumar, P.; Wu, Y.; Hwang, J. Y.; Hedhili, M. N.; Cavallo, L.; Sun, Y. K.; Li, L. J., New Insights on Graphite Anode Stability in Rechargeable Batteries: Li Ion Coordination Structures Prevail over Solid Electrolyte Interphases. ACS Energy Letters 2018, 3, 335. https://doi.org/10.1021/acsenergylett.7b01177
  50. Jiang, L.-L.; Yan, C.; Yao, Y.-X.; Cai, W.; Huang, J.-Q.; Zhang, Q., Inhibiting Solvent Co-Intercalation in a Graphite Anode by a Localized High-Concentration Electrolyte in Fast-Charging Batteries. Angewandte Chemie International Edition 2021, 60 (7), 3402-3406. https://doi.org/10.1002/anie.202009738
  51. Xing, L.; Zheng, X.; Schroeder, M.; Alvarado, J.; von Wald Cresce, A.; Xu, K.; Li, Q.; Li, W., Deciphering the Ethylene Carbonate-Propylene Carbonate Mystery in Li-Ion Batteries. Acc. Chem. Res. 2018, 51, 282. https://doi.org/10.1021/acs.accounts.7b00474
  52. Shen, Y.; Shen, X.; Yang, M.; Qian, J.; Cao, Y.; Yang, H.; Luo, Y.; Ai, X., Achieving Desirable Initial Coulombic Efficiencies and Full Capacity Utilization of Li-Ion Batteries by Chemical Prelithiation of Graphite Anode. Advanced Functional Materials 2021, 31 (24), 2101181. https://doi.org/10.1002/adfm.202101181