Browse > Article
http://dx.doi.org/10.5229/JKES.2021.24.4.77

Chemical Prelithiation Toward Lithium-ion Batteries with Higher Energy Density  

Hong, Jihyun (Korea Institute of Science and Technology (KIST))
Publication Information
Journal of the Korean Electrochemical Society / v.24, no.4, 2021 , pp. 77-92 More about this Journal
Abstract
The energy density of lithium-ion batteries (LIBs) determines the mileage of electric vehicles. For increasing the energy density of LIBs, it is necessary to develop high-capacity active materials that can store more lithium ions within constrained weight. The rapid progress made in cathode technology has realized the utilization of the near-theoretical capacity of cathode materials. In contrast, commercial LIBs have still exploited graphite as active material in anodes since the 1990s. The most promising way to increase anodes' capacity is to mix high-capacity and long-cycle-life silicon oxides (SiOx) with graphite. However, the low initial Coulombic efficiency (ICE) of SiOx limits its content below 15 wt%, impeding the capacity increase in anodes. To address this issue, various prelithiation techniques have been proposed, which can improve the ICE of high-capacity anode materials. In this review paper, we introduce the principles and expected effects of prelithiation techniques reported so far. According to the reaction mechanisms, the strategies are categorized. Mainly, we focus on the recent progress of solution-based chemical prelithiation methods with commercial viability, of which lithiation reaction occurs homogeneously at liquid-solid interfaces. We believe that developing a cost-effective and mass-scalable prelithiation process holds the key to dominating the anode market for next-generation LIBs.
Keywords
Li-ion batteries; Anodes; Initial Coulombic efficiency; Silicon oxides; Prelithiation; Chemical prelithiation; Lithium pre-doping;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhang, F.; Yang, J., Boosting initial coulombic efficiency of Si-based anodes: a review. Emergent Materials 2020, 3, 369.   DOI
2 Zhao, J.; Lu, Z.; Wang, H.; Liu, W.; Lee, H. W.; Yan, K.; Zhuo, D.; Lin, D.; Liu, N.; Cui, Y., Artificial Solid Electrolyte Interphase-Protected LixSi Nanoparticles: An Efficient and Stable Prelithiation Reagent for Lithium-Ion Batteries. J. Am. Chem. Soc. 2015, 137, 8372.   DOI
3 Xu, H.; Li, S.; Zhang, C.; Chen, X.; Liu, W.; Zheng, Y.; Xie, Y.; Huang, Y.; Li, J., Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries. Energy & Environmental Science 2019, 12(10), 2991-3000.   DOI
4 Kim, H. J.; Choi, S.; Lee, S. J.; Seo, M. W.; Lee, J. G.; Deniz, E.; Lee, Y. J.; Kim, E. K.; Choi, J. W., Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full Cells. Nano Lett. 2016, 16, 282.   DOI
5 Shen, Y.; Zhang, J.; Pu, Y.; Wang, H.; Wang, B.; Qian, J.; Cao, Y.; Zhong, F.; Ai, X.; Yang, H., Effective Chemical Prelithiation Strategy for Building a Silicon/Sulfur Li-Ion Battery. ACS Energy Letters 2019, 4(7), 1717-1724.   DOI
6 Zhang, X.; Qu, H.; Ji, W.; Zheng, D.; Ding, T.; Qiu, D.; Qu, D., An electrode-level prelithiation of SiO anodes with organolithium compounds for lithium-ion batteries. Journal of Power Sources 2020, 478, 229067.   DOI
7 Holtstiege, F.; Barmann, P.; Nolle, R.; Winter, M.; Placke, T., Pre-Lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges. Batteries 2018, 4, 4.   DOI
8 Peeks, M. D.; Claridge, T. D. W.; Anderson, H. L., Aromatic and antiaromatic ring currents in a molecular nanoring. Nature 2017, 541, 200.   DOI
9 Canters, G. W.; de Boer, E., Alkali N.M.R. experiments on the radical ion pairs of biphenyl and fluorenone. Mol. Phys. 1973, 26, 1185.   DOI
10 Wiberg, K. B., Antiaromaticity in Monocyclic Conjugated Carbon Rings. Chem. Rev. 2001, 101, 1317.   DOI
11 Chae, S.; Choi, S. H.; Kim, N.; Sung, J.; Cho, J., Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries. Angew. Chem., Int. Ed. 2020, 59, 110.   DOI
12 Meng, Q.; Li, G.; Yue, J.; Xu, Q.; Yin, Y. X.; Guo, Y. G., High-Performance Lithiated SiOx Anode Obtained by a Controllable and Efficient Prelithiation Strategy. ACS Appl. Mater. Interfaces 2019, 11, 32062.   DOI
13 Kim, H.; Hong, J.; Yoon, G.; Kim, H.; Park, K.-Y.; Park, M.-S.; Yoon, W.-S.; Kang, K., Sodium intercalation chemistry in graphite. Energy & Environmental Science 2015, 8 (10), 2963-2969.   DOI
14 Ming, J.; Cao, Z.; Wahyudi, W.; Li, M.; Kumar, P.; Wu, Y.; Hwang, J. Y.; Hedhili, M. N.; Cavallo, L.; Sun, Y. K.; Li, L. J., New Insights on Graphite Anode Stability in Rechargeable Batteries: Li Ion Coordination Structures Prevail over Solid Electrolyte Interphases. ACS Energy Letters 2018, 3, 335.   DOI
15 Li, P.; Hwang, J. Y.; Sun, Y. K., Nano/Microstructured Silicon-Graphite Composite Anode for High-Energy-Density Li-Ion Battery. ACS Nano 2019, 13, 2624.   DOI
16 Wang, F.; Wang, B.; Li, J.; Wang, B.; Zhou, Y.; Wang, D.; Liu, H.; Dou, S., Prelithiation: A Crucial Strategy for Boosting the Practical Application of Next-Generation Lithium Ion Battery. ACS Nano 2021, 15 (2), 2197-2218.   DOI
17 Hong, J.; Gent, W. E.; Xiao, P.; Lim, K.; Seo, D.-H.; Wu, J.; Csernica, P. M.; Takacs, C. J.; Nordlund, D.; Sun, C.-J.; Stone, K. H.; Passarello, D.; Yang, W.; Prendergast, D.; Ceder, G.; Toney, M. F.; Chueh, W. C., Metal-oxygen decoordination stabilizes anion redox in Li-rich oxides. Nature Materials 2019, 18(3), 256-265.   DOI
18 Xing, L.; Zheng, X.; Schroeder, M.; Alvarado, J.; von Wald Cresce, A.; Xu, K.; Li, Q.; Li, W., Deciphering the Ethylene Carbonate-Propylene Carbonate Mystery in Li-Ion Batteries. Acc. Chem. Res. 2018, 51, 282.   DOI
19 Ai, G.; Wang, Z.; Zhao, H.; Mao, W.; Fu, Y.; Yi, R.; Gao, Y.; Battaglia, V.; Wang, D.; Lopatin, S.; Liu, G., Scalable process for application of stabilized lithium metal powder in Li-ion batteries. Journal of Power Sources 2016, 309, 33-41.   DOI
20 Wang, Z.; Fu, Y.; Zhang, Z.; Yuan, S.; Amine, K.; Battaglia, V.; Liu, G., Application of Stabilized Lithium Metal Powder (SLMP®) in graphite anode - A high efficient prelithiation method for lithium-ion batteries. Journal of Power Sources 2014, 260, 57-61.   DOI
21 Zhao, J.; Sun, J.; Pei, A.; Zhou, G.; Yan, K.; Liu, Y.; Lin, D.; Cui, Y., A general prelithiation approach for group IV elements and corresponding oxides. Energy Storage Materials 2018, 10, 275.   DOI
22 Zhao, J.; Lee, H.-W.; Sun, J.; Yan, K.; Liu, Y.; Liu, W.; Lu, Z.; Lin, D.; Zhou, G.; Cui, Y., Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility. Proceedings of the National Academy of Sciences 2016, 113(27), 7408-7413.   DOI
23 Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D., The success story of graphite as a lithium-ion anode material - fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustainable Energy & Fuels 2020, 4(11), 5387-5416.   DOI
24 Domi, Y.; Usui, H.; Iwanari, D.; Sakaguchi, H., Effect of Mechanical Pre-Lithiation on Electrochemical Performance of Silicon Negative Electrode for Lithium-Ion Batteries. Journal of The Electrochemical Society 2017, 164(7), A1651-A1654.   DOI
25 Axsen, J.; Plotz, P.; Wolinetz, M., Crafting strong, integrated policy mixes for deep CO2 mitigation in road transport. Nat. Clim. Change 2020, 10, 809.   DOI
26 Choi, J. W.; Aurbach, D., Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 2016, 1, 16013.   DOI
27 Nayak, P. K.; Penki, T. R.; Markovsky, B.; Aurbach, D., Electrochemical Performance of Li- and Mn-Rich Cathodes in Full Cells with Prelithiated Graphite Negative Electrodes. ACS Energy Letters 2017, 2(3), 544-548.   DOI
28 Shen, Y.; Qian, J.; Yang, H.; Zhong, F.; Ai, X., Chemically Prelithiated Hard-Carbon Anode for High Power and High Capacity Li-Ion Batteries. Small 2020, 16(7), 1907602.   DOI
29 Wang, G.; Li, F.; Liu, D.; Zheng, D.; Luo, Y.; Qu, D.; Ding, T.; Qu, D., Chemical Prelithiation of Negative Electrodes in Ambient Air for Advanced Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 8699.   DOI
30 Choi, J.; Jeong, H.; Jang, J.; Jeon, A. R.; Kang, I.; Kwon, M.; Hong, J.; Lee, M., Weakly Solvating Solution Enables Chemical Prelithiation of Graphite-SiOx Anodes for High-Energy Li-Ion Batteries. Journal of the American Chemical Society 2021, 143(24), 9169-9176.   DOI
31 Takeshita, T.; Hirota, N., Alkali metal NMR studies of radical anion solutions. J. Chem. Phys. 1973, 58, 3745.   DOI
32 Yan, M.-Y.; Li, G.; Zhang, J.; Tian, Y.-F.; Yin, Y.-X.; Zhang, C.-J.; Jiang, K.-C.; Xu, Q.; Li, H.-L.; Guo, Y.-G., Enabling SiOx/C Anode with High Initial Coulombic Efficiency through a Chemical Pre-Lithiation Strategy for High-Energy-Density Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2020, 12 (24), 27202-27209.   DOI
33 Li, P.; Kim, H.; Myung, S. T.; Sun, Y. K., Diverting Exploration of Silicon Anode into Practical Way: A Review Focused on Silicon-Graphite Composite for Lithium Ion Batteries. Energy Storage Materials 2021, 35, 550.   DOI
34 Jiang, L.-L.; Yan, C.; Yao, Y.-X.; Cai, W.; Huang, J.-Q.; Zhang, Q., Inhibiting Solvent Co-Intercalation in a Graphite Anode by a Localized High-Concentration Electrolyte in Fast-Charging Batteries. Angewandte Chemie International Edition 2021, 60 (7), 3402-3406.   DOI
35 Liu, Z.; Yu, Q.; Zhao, Y.; He, R.; Xu, M.; Feng, S.; Li, S.; Zhou, L.; Mai, L., Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 2019, 48, 285.   DOI
36 Zheng, J.; Lochala, J. A.; Kwok, A.; Deng, Z. D.; Xiao, J., Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications. Advanced Science 2017, 4, 1700032.   DOI
37 Jia, H.; Zou, L.; Gao, P.; Cao, X.; Zhao, W.; He, Y.; Engelhard, M. H.; Burton, S. D.; Wang, H.; Ren, X.; Li, Q.; Yi, R.; Zhang, X.; Wang, C.; Xu, Z.; Li, X.; Zhang, J. G.; Xu, W., High-Performance Silicon Anodes Enabled By Nonflammable Localized High-Concentration Electrolytes. Adv. Energy Mater. 2019, 9, 1900784.   DOI
38 Shen, D.; Huang, C.; Gan, L.; Liu, J.; Gong, Z.; Long, M., Rational Design of Si@SiO2/C Composites Using Sustainable Cellulose as a Carbon Resource for Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2018, 10(9), 7946-7954.   DOI
39 Lu, W.; Zhou, X.; Liu, Y.; Zhu, L., Crack-Free Silicon Monoxide as Anodes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12(51), 57141.   DOI
40 Placke, T.; Kloepsch, R.; Duhnen, S.; Winter, M., Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. Journal of Solid State Electrochemistry 2017, 21(7), 1939-1964.   DOI
41 Li, X.; Sun, X.; Hu, X.; Fan, F.; Cai, S.; Zheng, C.; Stucky, G. D., Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries. Nano Energy 2020, 77, 105143.   DOI
42 Jezowski, P.; Crosnier, O.; Deunf, E.; Poizot, P.; Beguin, F.; Brousse, T., Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. Nat. Mater. 2018, 17, 167.   DOI
43 Pan, Q.; Zuo, P.; Mu, T.; Du, C.; Cheng, X.; Ma, Y.; Gao, Y.; Yin, G., Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder. Journal of Power Sources 2017, 347, 170-177.   DOI
44 Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z., Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5, 1042.   DOI
45 Jang, J.; Kang, I.; Choi, J.; Jeong, H.; Yi, K.-W.; Hong, J.; Lee, M., Molecularly Tailored Lithium-Arene Complex Enables Chemical Prelithiation of High-Capacity Lithium-Ion Battery Anodes. Angewandte Chemie International Edition 2020, 59(34), 14473-14480.   DOI
46 Forney, M. W.; Ganter, M. J.; Staub, J. W.; Ridgley, R. D.; Landi, B. J., Prelithiation of Silicon-Carbon Nanotube Anodes for Lithium Ion Batteries by Stabilized Lithium Metal Powder (SLMP). Nano Letters 2013, 13(9), 4158-4163.   DOI
47 Marinaro, M.; Weinberger, M.; Wohlfahrt-Mehrens, M., Toward pre-lithiatied high areal capacity silicon anodes for Lithium-ion batteries. Electrochimica Acta 2016, 206, 99-107.   DOI
48 Zhao, J.; Lu, Z.; Liu, N.; Lee, H.-W.; McDowell, M. T.; Cui, Y., Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents. Nature Communications 2014, 5 (1), 5088.   DOI
49 Shen, Y.; Shen, X.; Yang, M.; Qian, J.; Cao, Y.; Yang, H.; Luo, Y.; Ai, X., Achieving Desirable Initial Coulombic Efficiencies and Full Capacity Utilization of Li-Ion Batteries by Chemical Prelithiation of Graphite Anode. Advanced Functional Materials 2021, 31 (24), 2101181.   DOI
50 Sun, Y.; Lee, H. W.; Seh, Z. W.; Liu, N.; Sun, J.; Li, Y.; Cui, Y., High-capacity battery cathode prelithiation to offset initial lithium loss. Nature Energy 2016, 1, 15008.   DOI
51 Zou, K.; Deng, W.; Cai, P.; Deng, X.; Wang, B.; Liu, C.; Li, J.; Hou, H.; Zou, G.; Ji, X., Prelithiation/Presodiation Techniques for Advanced Electrochemical Energy Storage Systems: Concepts, Applications, and Perspectives. Adv. Funct. Mater. 2021, 31, 2005581.   DOI
52 de la Llave, E.; Borgel, V.; Park, K.-J.; Hwang, J.-Y.; Sun, Y.-K.; Hartmann, P.; Chesneau, F.-F.; Aurbach, D., Comparison between Na-Ion and Li-Ion Cells: Understanding the Critical Role of the Cathodes Stability and the Anodes Pretreatment on the Cells Behavior. ACS Applied Materials & Interfaces 2016, 8(3), 1867-1875.   DOI