Browse > Article
http://dx.doi.org/10.5322/JESI.2014.23.10.1745

Characteristics of Electricity Production by Metallic and Non-metallic Anodes Immersed in Mud Sediment Using Sediment Microbial Fuel Cell  

Haque, Niamul (Department of Ocean System Engineering, Gyeongsang National University)
Cho, Dae-Chul (Department of Energy and Environmental Engineering, Soonchunhyang University)
Kwon, Sung-Hyun (Department of Ocean System Engineering, Gyeongsang National University)
Publication Information
Journal of Environmental Science International / v.23, no.10, 2014 , pp. 1745-1753 More about this Journal
Abstract
Sediment microbial fuel cell (SMFC), equipped with Zn, Al, Cu, Fe or graphite felt (GF) anode and marine sediment, was performed. Graphite felt was used as a common cathode. SMFC was single chambered and did not use any redox mediator. The aim of this work was to find efficient anodic material. Oxidation reduction potential (ORP), cell voltage, current density, power density, pH and chemical oxygen demand (COD) were measured for SMFC's performance.. The order of maximum power density was $913mWm^{-2}$ for Zn, $646mWm^{-2}$ for Fe, $387.8mWm^{-2}$ for Cu, $266mWm^{-2}$ for Al, and $127mWm^{-2}$ for graphite felt (GF). The current density over voltage was found to be strongly correlated with metal electrodes, but the graphite felt electrode, in which relatively weaker electricity was observed because of its bio-oriented mechanism. Metal corrosion reactions and/or a complicated microbial electron transfer mechanism acting around the anodic compartment may facilitate to generate electricity. We presume that more sophisticated selection of anodic material can lead to better performance in SMFC.
Keywords
Sediment microbial fuel cell; Microbial corrosion; Oxidation reduction potential; Chemical Oxygen Demand;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, H.J., Hyun, M.S., Chang, I.S., Kim, B.H., 1999b, A fuel cell type lactate biosensor using a metal reducing bacterium, Shewanella puterfaciens. J. Microbial. Biotechnol., 9, 365-367.
2 Wei, D., Zhang, X., 2007, Current production by a deep-sea strain Shewanella sp. DS1. Current Microbiology, 55, 497-500   DOI
3 Kim, H. J., Park, H.S., Hyun, M. S, Chang, I.S., Kim. M., Kim, B.H., 2002, A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciense, Enzyme Microb. Technol., 30, 145-152.   DOI   ScienceOn
4 Kim, H.J., Park, H.S., Hyun, M.S., Chang I. S., Kim, M., Kim, B.H., 2002, A mediator-less microbial fuel cell using a metallic bacterium Shewanella puterfaciens, Enzyme Microb. Technol., 30, 125-152.   DOI   ScienceOn
5 Kim, J. R., Min, B., Logan, B.E., 2005, Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl. Microbial Biotechnol., 68, 23-30.   DOI   ScienceOn
6 Kus, E., Abboud, R., Popa, R., Nealson, K.H., Mansfeld, F., 2005, The concept of the bacterial battery. Corros. Sci., 47, 1063-1069.   DOI   ScienceOn
7 Kusel, K., Dorsch, T., Acker, G., Stackebrandt, E., 1999, Microbial reduction of Fe (III) in acidic sediments: Isolation of Acidiphiliun cryptum JF-5 capable of coupling the reduction of Fe (III) to the oxidation of glucose. Appl. Environ. Microbiol., 65, 3633-3640.
8 Liu, H., Logan, B. E., 2004, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol., 38, 4040-4046.   DOI   ScienceOn
9 Lee, S.A,, Choi Y., Jung, S.H., Kim S., 2002, Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxidans, Bioelectrochemistry, 57, 173-178.   DOI   ScienceOn
10 Liu, H, Cheng, S. A., Logan, B.E.,2005, Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol., 39, 5488-5793.   DOI   ScienceOn
11 Liu, H., Cheng, S. A., Logan, B.E., 2005, Production of electricity from acetate or butyrate using a single-chambered microbial fuel cell, Environ. Sci. Technol., 39, 658-662.   DOI   ScienceOn
12 Liu, H., Ramnarayanan, R, Logan, B. E., 2004, Production of electricity during wastewater treatment using a single chamber microbial fuel cell, Environ. Sci. Technol., 38, 2281-2285.   DOI   ScienceOn
13 Logan BE. Extracting hydrogen electricity from renewable resources, 2004, Environ. Sci. Technol, 38, 160A-167A.   DOI   ScienceOn
14 Logan, B.E., Hamelers, B., Rozendal, R., Schroder,V., Keller,V., Freguia, S., Aelterman, P., Verstraete, W, Rabaey, K., 2006, Microbial fuel cells: Methodology and technology, Environmental Science & Technology, 40, 5181-5192, doi:10.1021/es0605016.   DOI   ScienceOn
15 Logan, B.E., Murano, C., Scott, K., Gray, N.D., Head, I. M., 2005, Electricity generation from cysteine in a microbial fuel cell. Water Res., 39, 942-952.   DOI   ScienceOn
16 Bond, D.R., Lovely, D. R. 2003, Eelectricity production by Geobacter sulfurreducens attached to electrodes. Apple. Environ. Microbial., 69:1546-1555.
17 Malki, M., De Lacey, A.L., Rodriguez, N., Amils, R., Fernandez, V.M., 2008, Preferential use of an anode as an electron acceptor by an acidophilic bacterium in the presence of oxygen. Appl. Environ. Microbiol., 74, 4472-4476.   DOI   ScienceOn
18 Cheng, S., Liu, H., Logan, B.E., 2006, Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells, Environ. Sci. Technol., 40, 364-369.   DOI   ScienceOn
19 Biffinger, J.C., Pietron, J., Bretschger, O., Nadeau, L.J., Johnson, G.R., Williams, C.C., Nealson, K.H., Ringeisen, B.R., 2008, The influence of acidity on microbial fuel cells containing Shewanella oneidensis. Biosens. Bioelectron., 24, 900-905.   DOI   ScienceOn
20 Chaudhuri, S.K., Lovley, D. R., 2003, Electricity generation by direct oxidation of glucose in mediator-less microbial fuel cells. Nat. Biotechnol., 21, 1229-1232.   DOI   ScienceOn
21 Choi, Y., Song, J., Jung, S., Kim, S., Optimization of the performance of microbial fuel cells containing alkalophilic Bacillus s, 2001, J. Microbiol. Biotechnol., 11, 863-869.
22 Erable, B., Etcheverry, L., Bergel, A., 2009, Increased power from a two chamber microbial fuel cell with a low pH air-cathode compartment. Electrochem. Commun., 11,619-622.   DOI   ScienceOn
23 Froelich, P.N., Klinkhammer, G. P., Bender, M.L., Luedtke, N. A., Heath, G.R., Cullen, D., Dauphis, P., Hammond, D., Hartman, B., Maynard, V.,1979, Early oxidation of organic-matter in pelagic sediments of the eastern equatorial Atlantic-sub oxic digenesis, Geochim. Cosmochim. Acta 1979, 43 (7), 1075-1090.   DOI   ScienceOn
24 Katz, E., Willner, I., Kotlyar, A. B., A noncom-partmentalized glucose vertical bar O-2 biofuel cell by bioengineered electrode surfaces,1999, J. Electroanal. Chem., 479, 64-68.   DOI   ScienceOn
25 Gil GC, IS Chang, BH Kim, M Kim, JK Jang, HS Park, HJ Kim. Operating parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron., 2003, 18:327-334.   DOI   ScienceOn
26 Grady, C.P.L. Jr, Daigger, G. T., Lim, H.C. In Biological wastater treatment, 2nd ed., New York, Marcek, 1999.
27 Gregory, K.B., Bond, D.R., Lovley D.R., 2004, Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol., 6, 596-604.   DOI   ScienceOn
28 Holmes, D. E., Bond, D.R., Lovley, D.R., 2004a, Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes, Applied Environmental Micro-biology,70,1234-1237.   DOI   ScienceOn
29 Holmes, D.E., Bond, D.R., O'Neill, R.A., Reimers, C.E., Tender, L.R., Lovley, D.R., 2004b, Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microbial Ecology, 48, 178-190.   DOI   ScienceOn
30 Johnson, D.B., McGinness, S., 1991, Ferric iron reduction by acidophilic heterotrophic bacteria. Appl. Environ. Microbiol., 57, 207-211.
31 Kim, B.H., Kim, H.J., Hyun, M.S., DH Park. Direct electrode reaction of Fe(iii) reducing bacterium, Shewanella puterfaciens, J. Microbial. Biotechnol., 1999a, 127-131.
32 McKinlay, J.B., Zeikus, J.G., 2004, Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli, Appl. Environ. Microbiol., 70, 3467-3474.   DOI   ScienceOn
33 Park, D.H., Zeikus, J.G., 2003, Improved fuel cell and electrode designs for producing electricity from microbial degradation, Biotechnol. Bioeng., 81, 348-355.   DOI   ScienceOn
34 Min B, Logan, B.E., 2004, Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol., 38, 5809-5812.   DOI   ScienceOn
35 Moon, H., Chang, I.S., Kang, K.H., Jang, J.K, Kim, B.H., 2005, Residence time distribution in microbial fuel cell and its influence on COD removal with electricity production. Biochem. Eng. J., 27, 59-65.   DOI   ScienceOn
36 Park, D.H., Zeikus, J.G., 2000, Electricity generation in microbial fuel cells using neutral red as an electronophore, Appl. Environ. Microbiol, 66, 1292-1297.   DOI   ScienceOn
37 Rabaey, K., Verstraete, W., 2005, Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology, 23, 291-298, doi:10.1016/j.tibtech.2005.04.008   DOI   ScienceOn
38 Park, H.S., Kim, B.H., Kim, H.S., Kim H.J. HJ, Kim, G.T., Kim, M., Chang, I.S., Park, Y.K., Chang, H.I.,2001, A novel electrochemically active and Fe(III) reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell, Anaerobe 7, 297-306.   DOI   ScienceOn
39 Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M., Verstraete, W., 2004, Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol., 70, 5373-5382.   DOI   ScienceOn
40 Rabaey, K., Sompel K.V.D., Maignien L., Boon N., Aelterman P., Clauwaert P., Schamphelaire L.D., Pham H.T., Vermeulen J., Verhaege M., Lens P., Verstraete W., 2006, Microbial fuel cells for sulfide removal, Environmental Science & Technology, 40, 5218-5224, doi:10.1021/es060382u.   DOI   ScienceOn
41 Videla, H. A., Manual of Biocorrosion, CRC Press, 1996.
42 Schroder, U., Niessen, J., Scholz, F., A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude, 2003, Angew. Chem., Int. Ed., 42, 2880-2883.   DOI   ScienceOn
43 Tender, L.M., Reimers, C.E., Stecher, H.A., Holmes, D.E., Bond, D.R., Lowy, D.A., Pilobello, K., Fertig, S.J., Lovley, D.R., 2002, Harnessing microbially generated power on the seafloor, Nat. Biotechnol., 20, 821-825.   DOI   ScienceOn
44 Tsujimura, S.,Wadano, A., Kano, K., Ikeda, T., 2001, Photosynthetic bioelectrochemical cell utilizing cyanobacteria and water generating oxidase. Enzyme Microb. Technol., 29, 225-231.   DOI   ScienceOn
45 Mansfeld, F., 2007, The interaction of bacteria and metal surfaces; Electrochimica Acta 52, 7670-7680.   DOI   ScienceOn
46 Mathis, B.J., Marshall, C.W., Milliken, C.E., Makkar, R.S., Creager, S.E., May, H.D., 2008, Electricity generation by thermophilic microorganisms from marine sediment. Applied Microbiology & Biotechnology, 78, 147-155.   DOI