DOI QR코드

DOI QR Code

Cross-linkable Waterborne Polyurethane based on Castor Oil as an Efficient Binder for Silicon Anodes

실리콘 음극용 효과적인 바인더로서 가교결합이 가능한 캐스터 오일 기반의 수분산 폴리우레탄

  • Lee, Yong Hun (School of Chemical Engineering, Pusan National University) ;
  • Kim, Eunji (School of Chemical Engineering, Pusan National University) ;
  • Lee, Jin Hong (School of Chemical Engineering, Pusan National University)
  • 이용훈 (부산대학교 공과대학 응용화학공학부) ;
  • 김은지 (부산대학교 공과대학 응용화학공학부) ;
  • 이진홍 (부산대학교 공과대학 응용화학공학부)
  • Received : 2021.09.27
  • Accepted : 2021.10.10
  • Published : 2021.12.10

Abstract

Silicon (Si) is one of the promising active materials to replace the widely used graphite because of its low electrochemical potential and high theoretical capacity. However, Si anodes still face in problems with the huge volume expansion and continuous decomposition of the electrolyte during repeated charge and discharge processes. To address these issues, a cross-linkable waterborne polyurethane (CWPU) based on a bio-oil, castor oil, was prepared and reacted with Tris(2,3-epoxypropyl) isocyanurate (TGIC) linkers, resulting in the formation of a mechanically robust 3D network structure. Si anodes fabricated with the CWPU-TGIC exhibited stable cycling performances and excellent discharge capacities. The results revealed that the CWPU-TGIC binder efficiently accommodates the large volume change for Si anode during charge and discharge cycles. Overall, the eco-friendly binder shows great promise in improving the electrochemical performances of Si anodes.

실리콘(Si) 활물질은 낮은 전위와 높은 에너지 밀도를 가지고 있어 현재 활용되고 있는 흑연을 대체할 수 있는 소재로 기대되고 있다. 그러나 반복적인 충, 방전 과정 중 부피 팽창으로 인한 실리콘 입자의 붕괴와 지속적인 전해질 분해 반응이 문제점으로 지적되고 있다. 이와 같은 문제를 해결하기 위해 본 연구에서는 실리콘 음극에 대한 효과적인 바인더로서 가교 결합이 가능한 Castor oil 기반의 수분산 폴리우레탄을 제조하였으며(CWPU), 이를 다량의 Oxirane 작용기를 가진 Tris(2,3-epoxypropyl) isocyanurate (TGIC)와 결합시켜 기계적으로 안정한 3차원 네트워크 구조를 형성하였다. CWPU-TGIC 바인더로 제조된 실리콘 음극은 안정적인 장기 수명 특성뿐만 아니라 우수한 방전 용량을 나타내었다. 이러한 결과는 CWPU-TGIC 바인더가 장기간 반복되는 충, 방전 과정 동안 실리콘 음극의 큰 부피 변화를 효과적으로 완화하는 것으로 분석되었다. 본 연구 결과는 실리콘 음극의 전기화학적 특성을 향상시키기 위한 효과적인 친환경 바인더의 가능성을 제시한다.

Keywords

Acknowledgement

본 연구는 부산대학교 기본연구지원사업(2년) 연구비와 2020학년도 부산대학교 BK21 FOUR 대학원혁신지원사업 지원으로 이루어졌음

References

  1. M. Armand and J.-M. Tarascon, Building better batteries, Nature, 451, 652-657 (2008). https://doi.org/10.1038/451652a
  2. C. H. Jung, K. H. Kim, and S. H. Hong, Stable silicon anode for lithium-ion batteries through covalent bond formation with a binder via esterification, ACS Appl. Mater. Interfaces, 11, 26753-26763 (2019). https://doi.org/10.1021/acsami.9b03866
  3. J. Liu, Q. Zhang, T. Zhang, J.-T. Li, L. Huang, and S.-G. Sun, A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries, Adv. Func. Mater., 25, 3599-3605 (2015). https://doi.org/10.1002/adfm.201500589
  4. D. Yao, Y. Yang, Y. Deng, and C. Wang, Flexible polyimides through one-pot synthesis as water-soluble binders for silicon anodes in lithium ion batteries, J. Power Sources, 379, 26-32 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.086
  5. L. Zhu, F. Du, Y. Zhuang, H. Dai, H. Cao, J. Adkins, Q. Zhou, and J. Zheng, Effect of crosslinking binders on Li-storage behavior of silicon particles as anodes for Lithium ion batteries, J. Electroanal. Chem., 845, 22-30 (2019). https://doi.org/10.1016/j.jelechem.2019.05.019
  6. Y. K. Jeong, T. W. Kwon, I. Lee, T. S. Kim, A. Coskun, and J. W. Choi, Hyperbranched beta-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries, Nano Lett., 14, 864-70 (2014). https://doi.org/10.1021/nl404237j
  7. J. S. Kim, W. Choi, K. Y. Cho, D. Byun, J. Lim, and J .K. Lee, Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries, J. Power Sources, 244, 521-526(2013). https://doi.org/10.1016/j.jpowsour.2013.02.049
  8. J. Zhou, T. Qian, M. Wang, N. Xu, Q. Zhang, Q. Li, and C. Yan, Core-shell coating silicon anode Interfaces with coordination complex for stable lithium-ion batteries, ACS Appl. Mater. Interfaces, 8, 5358-5365 (2016). https://doi.org/10.1021/acsami.5b12392
  9. M. Ashuri, Q. He, and L. L. Shaw, Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter, Nanoscale, 8, 74-103 (2016). https://doi.org/10.1039/C5NR05116A
  10. M. A. Azam, N. E. Safie, A. S. Ahmad, N. A. Yuza, and N. S. A. Zulkifli, Recent advances of silicon, carbon composites and tin oxide as new anode materials for lithium-ion battery: A comprehensive review, J. Energy Storage, 33, 102096 (2021). https://doi.org/10.1016/j.est.2020.102096
  11. F. Zou and A. Manthiram, A review of the design of advanced binders for high-performance batteries, Adv. Energy Mater., 10, 2002508 (2020). https://doi.org/10.1002/aenm.202002508
  12. H. Yuan, J.-Q. Huang, H.-J. Peng, M.-M. Titirici, R. Xiang, R. Chen, Q. Liu, and Q. Zhang, A review of functional binders in lithium-sulfur batteries, Adv. Energy Mater., 8, 1802107 (2018). https://doi.org/10.1002/aenm.201802107
  13. T.-w. Kwon, Y. K. Jeong, E. Deniz, S. Y. AlQaradawi, and J. W. Choi, A. Coskun, Dynamic cross-linking of polymeric binders based on host-guest interactions for silicon anodes in lithium ion batteries, ACS Nano, 9, 11317-11324 (2015). https://doi.org/10.1021/acsnano.5b05030
  14. C. Luo, L. Du, W. Wu, H. Xu, G. Zhang, S. Li, C. Wang, Z. Lu, and Y. Deng, Novel lignin-derived water-soluble binder for micro silicon anode in lithium-Ion batteries, ACS Sustain. Chem. Eng., 6, 12621-12629 (2018). https://doi.org/10.1021/acssuschemeng.8b01161
  15. J.-T. Li, Z.-Y. Wu, Y.-Q. Lu, Y. Zhou, Q.-S. Huang, L. Huang, and S.-G. Sun, Water soluble binder, an electrochemical performance booster for electrode materials with high energy density, Adv. Energy Mater., 7, 1701185 (2017). https://doi.org/10.1002/aenm.201701185
  16. H. A. Lee, M. Shin, J. Kim, J. W. Choi, and H. Lee, Designing adaptive binders for microenvironment settings of silicon anode particles, Adv. Mater., 33, 2007460 (2021). https://doi.org/10.1002/adma.202007460
  17. Y. K. Jeong, and J. W. Choi, Mussel-Inspired Self-Healing Metallopolymers for silicon nanoparticle anodes, ACS Nano, 13, 8364-8373 (2019). https://doi.org/10.1021/acsnano.9b03837
  18. G. Zhang, Y. Yang, Y. Chen, J. Huang, T. Zhang, H. Zeng, C. Wang, G. Liu, and Y. Deng, A quadruple-hydrogen-bonded supramolecular binder for high-performance silicon anodes in lithium-ion batteries, Small, 14, 180089 (2018).
  19. L. Wei, C. Chen, Z. Hou, and H. Wei, Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries, Sci. Rep., 6, 19583 (2016). https://doi.org/10.1038/srep19583
  20. T. M. Higgins, S. H. Park, P. J. King, C. J. Zhang, N. McEvoy, N. C. Berner, D. Daly, A. Shmeliov, U. Khan, G. Duesberg, V. Nicolosi, and J. N. Coleman, A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes, ACS Nano, 10, 3702-3713 (2016). https://doi.org/10.1021/acsnano.6b00218
  21. Y. Gu, S. Yang, G. Zhu, Y. Yuan, Q. Qu, Y. Wang, and H. Zheng, The effects of cross-linking cations on the electrochemical behavior of silicon anodes with alginate binder, Electrochim. Acta, 269, 405-414 (2018). https://doi.org/10.1016/j.electacta.2018.02.168
  22. T. W. Kwon and J. W. Choi, A. Coskun, The emerging era of supramolecular polymeric binders in silicon anodes, Chem. Soc. Rev., 47, 2145-2164 (2018). https://doi.org/10.1039/c7cs00858a
  23. M. Shi, J. Yang, and X. Wang, Preparation castor oil-modified high bio-based waterborne polyurethane and its application, J. Polym. Res., 28 (2021).
  24. X. Wang, Y. Zhang, H. Liang, X. Zhou, C. Fang, C. Zhang, and Y. Luo, Synthesis and properties of castor oil-based waterborne polyurethane/sodium alginate composites with tunable properties, Carbohydr. Polym., 208, 391-397 (2019). https://doi.org/10.1016/j.carbpol.2018.12.090
  25. C. H. Chen and C. L. Chiang, Preparation and Characteristics of an environmentally friendly hyperbranched flame-retardant polyurethane hybrid containing nitrogen, phosphorus, and silicon, Polymers, 11, 720 (2019). https://doi.org/10.3390/polym11040720
  26. L. Ren, X. Ma, J. Zhang, and T. Qiang, Preparation of gallic acid modified waterborne polyurethane made from bio-based polyol, Polymer, 194, 122370 (2020). https://doi.org/10.1016/j.polymer.2020.122370
  27. Y. Xia and R. C. Larock, Castor-oil-based waterborne polyurethane dispersions cured with an aziridine-based crosslinker, Macromol. Mater. Eng., 296, 703-709 (2011). https://doi.org/10.1002/mame.201000431
  28. R. You, X. Han, Z. Zhang, L. Li, C. Li, W. Huang, J. Wang, J. Xu, and S. Chen, An environmental friendly cross-linked polysaccharide binder for silicon anode in lithium-ion batteries, Ionics, 25, 4109-4118 (2019). https://doi.org/10.1007/s11581-019-02972-z
  29. B. Gendensuren, C. He, and E.-S. Oh, Preparation of pectin-based dual-crosslinked network as a binder for high performance Si/C anode for LIBs, Korean J. Chem. Eng., 37, 366-373 (2020). https://doi.org/10.1007/s11814-019-0438-0
  30. R. Rohan, T.-C. Kuo, C.-Y. Chiou, Y.-L. Chang, C.-C. Li, and J.-T. Lee, Low-cost and sustainable corn starch as a high-performance aqueous binder in silicon anodes via in situ cross-linking, J. Power Sources, 396, 459-466 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.045
  31. J. Joseph, J. Moon, T. W. Kong, D. H. Kim, and J. S. Oh, Pot life assessment and mechanical property of fast curing polyurethane developed with eco-friendly pre-polymer, Elastomers and Composites, 55, 13-19 (2020). https://doi.org/10.7473/ec.2020.55.1.13
  32. C. Chen, S. H. Lee, M. Cho, J. Kim, and Y. Lee, Cross-linked chitosan as an efficient binder for Si anode of Li-ion batteries, ACS Appl. Mater. Interfaces, 8, 2658-2665 (2016). https://doi.org/10.1021/acsami.5b10673
  33. T.-C. Kuo, C.-Y. Chiou, C.-C. Li, and J.-T. Lee, In situ cross-linked poly(ether urethane) elastomer as a binder for high-performance Si anodes of lithium-ion batteries, Electrochim. Acta, 327, 135011 (2019). https://doi.org/10.1016/j.electacta.2019.135011
  34. L. Yu, J. Liu, S. He, C. Huang, L. Gan, Z. Gong, and M. Long, A novel high-performance 3D polymer binder for silicon anode in lithium-ion batteries, J. Phys. Chem. Solids 135, 109113 (2019). https://doi.org/10.1016/j.jpcs.2019.109113
  35. E. Bulut, E. Guzel, N. Yuca, and O. S. Taskin, Novel approach with polyfluorene/polydisulfide copolymer binder for high-capacity silicon anode in lithium-ion batteries, J. Appl. Polym. Sci., 137, 48303 (2019). https://doi.org/10.1002/app.48303
  36. C. Li, T. Shi, H. Yoshitake, and H. Wang, Improved performance in micron-sized silicon anodes by in situ polymerization of acrylic acid-based slurry, J. Mater. Chem. A, 4, 16982-16991 (2016). https://doi.org/10.1039/C6TA05650D
  37. Q. Si, M. Matsui, T. Horiba, O. Yamamoto, Y. Takeda, N. Seki, and N. Imanishi, Carbon paper substrate for silicon-carbon composite anodes in lithium-ion batteries, J. Power Sources 241, 744-750 (2013). https://doi.org/10.1016/j.jpowsour.2013.05.090
  38. J. Song, M. Zhou, R. Yi, T. Xu, M. L. Gordin, D. Tang, Z. Yu, M. Regula, and D. Wang, Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries, Adv. Func. Mater., 24, 5904-5910 (2014). https://doi.org/10.1002/adfm.201401269