DOI QR코드

DOI QR Code

Electricity Production by Metallic and Carbon Anodes Immersed in an Estuarine Sediment

퇴적토에 담지된 금속 및 탄소전극에 의한 전기 생산 특성

  • Song, Hyung-Jin (Department of Energy & Environmental Engineering, Soonchunhyang University) ;
  • Rhee, In-Hyoung (Department of Energy & Environmental Engineering, Soonchunhyang University) ;
  • Kwon, Sung-Hyun (Department of Marine Environmental Engineering/Institute of Marine Industry Gyeongsang National University) ;
  • Cho, Dae-Chul (Department of Energy & Environmental Engineering, Soonchunhyang University)
  • 송형진 (순천향대학교 에너지환경공학과) ;
  • 이인형 (순천향대학교 에너지환경공학과) ;
  • 권성현 (경상대학교 해양환경공학과(해양산업연구소)) ;
  • 조대철 (순천향대학교 에너지환경공학과)
  • Published : 2009.12.31

Abstract

One-chambered sediment cells with a variety of anodic electrodes were tested for generation of electricity. Material used for anodes was iron, brass, zinc/iron, copper and graphite felt which was used for a common cathode. The estuarine sediment served as supplier of oxidants or electron-producing microbial habitat which evoked electrons via fast metal corrosion reactions or a complicated microbial electron transfer mechanism, respectively. Maximum power density and current density were found to be $6.90\;W/m^2$ (iron/zinc) and $7.76\;A/m^2$ (iron), respectively. Interestingly, copper wrapped with carbon cloth produced better electric performance than copper only, by 60%, possibly because the cloth not only prevented rapid corrosion on the copper surface by some degrees, but also helped growing some electron-emitting microbes on its surface. At anodes oxidation reduction potential(ORP) was kept to be stationary over time except at the very initial period. The pH reduction in the copper and copper/carbon electrodes could be a sign of organic acid production due to a chemical change in the sediment. The simple estimation of interfacial, electrical resistances of electrodes and electrolyte in the sediment cell that a key to the electricity generation should be in how to control corrosion rate or microbial electron transfer activity.

철, 황동, 아연, 구리 등 금속과 탄소섬유를 양전극으로 한 해양 퇴적물 전지를 구성하여 전기적 특성을 알아보았다. 금속 전극으로는 철, 황동, 아연, 구리판과 탄소전극으로는 graphite felt가 사용되고 환원부 전극은 graphite felt로 하였다. 해안 퇴적토에 서식하는 미생물군에 의해, 또는 빠른 금속 부식반응에 기초한 산화작용에 의해 전자가 방출되고 아연/철 전극에서 최대전류가 $7.7\;A/m^2$, 철 전극에서 최대 $6.9\;W/m^2$의 전력밀도가 형성되었다. 탄소 천을 감싼 복합금속전극 시험결과 금속전극만 사용한 경우보다 전기특성이 60%정도 향상되었고 이는 미생물 증식과 부식에 의한 산화피막 형성이 지연된 결과로 여겨진다. 산화전극부의 ORP는 실험시간 내내 일정하였으며 구리전극 사용시 유기산 형성으로 추정되는 약한 pH 강하가 일어났다. 전극부와 전해질 부분의 전기저항을 계산한 결과 전기 생산의 주 영향인자는 부식반응 조절과 미생물의 전자 이전활성에 있음을 알 수 있었다.

Keywords

References

  1. Allen R. M., and Bennetto, H. P. 1993, "Microbial fuel-cells: Electricity production from carbohydrates", Applied Biochemistry and Biotechnology, Vol. 40, pp. 27-40. https://doi.org/10.1007/BF02918975
  2. Suzuki, S., Karube, I., and Matsunaga, T., 1978, "Application of a biochemical fuel cell to wastewater", Biotechnol. Bioeng. Symp, Vol. 8, pp. 501-511.
  3. Choi, C. S., Lim, B. S., Lei Xu, and Song, G. H., 2009, "Electric power generation and treatment efficiency of organic matter on hydraulic retention time in microbial fuel cell reactor", J. Korean Society on water Quality, Vol. 25 No. 1, pp. 159-166.
  4. Tender, L. M., Reimers, C. E., Stecher, H. A., Holmes, D. E., Bond, D. R., Lowy, D. A., Pilobello, K., Fertig, S. J., and Lovley D. R., 2002, "Harnessing microbially generated power on the seafloor", Nat Biotechnol, Vol. 20, No. 8, pp. 821-825. https://doi.org/10.1038/nbt716
  5. Reimers, C. E, Tender, L. M, Fertig, S. J., and Wang, W., 2001, "Harvesting energy from the marine sediment−water interface", Environmental science & technology, Vol. 35, No. 1, pp. 192-195. https://doi.org/10.1021/es001223s
  6. Kim, H. J., Park, H. S., Hyun, M. S., Chang, I. S., Kim, M. A., and Kim, B. H., 2002, "A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens", Enzyme and Microbial Technology, Vol. 30, pp. 145-152. https://doi.org/10.1016/S0141-0229(01)00478-1
  7. Liu, H. and Logan, B. E., 2004, "Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane", Environ. Sci. Technol, Vol. 38, pp. 4040-4046. https://doi.org/10.1021/es0499344
  8. Logan, B. E., and Regan, J. M., 2006, "Electricity-producing bacterial communities in microbial fuel cells", Trend in Microbiology, Vol. 14, No 12, pp. 512-518. https://doi.org/10.1016/j.tim.2006.10.003
  9. Du, Z., Li, H., Gu, T., 2007, "A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy", Biotechnology Advances, Vol. 25, pp. 464-482. https://doi.org/10.1016/j.biotechadv.2007.05.004
  10. Bond, D. R. and Lovley, D. R., 2003, "Electricity production by Geobacter sulfurreducens attached to electrodes", Applied and environmental microbiology, Vol. 69, No. 3, pp. 1548-1555. https://doi.org/10.1128/AEM.69.3.1548-1555.2003
  11. Lovley, D. R., 1991, "Dissimilatory Fe(III) and Mn(IV) reduction", Microbiol. Rev., Vol. 55, pp. 259-287.
  12. Lovley, D.R., 2006, "Microbial energizers: fuel cells that keep on going," Microbe, Vol. 1, No. 7, pp. 323-329.
  13. Wilcock, W. S. D., and Kauffman, P. C., 1997, "Development of a seawater battery for deep-water applications", Journal of power sources, Vol. 66, pp. 71-75. https://doi.org/10.1016/S0378-7753(96)02483-4
  14. Rao, B. M. L., Cook, R. and Kobasz, W., 1992, "Aluminum-Air batteries for military applications", Power Sources Symposium, Vol. 35, pp. 34-37. https://doi.org/10.1109/IPSS.1992.282061
  15. Lovley, D. R., 2006, "Microbial Energizers: Fuel Cells That Keep on Going", Microbe, Vol. 1, No. 7, pp. 323-329.
  16. Lee, T. J., Han, K. H., Yi, H. S., and Kim, J. K., 1999, "A study on electrocoagulation using Iron electrode for wastewater treatment", J. KSWQ, Vol. 15, No. 1, pp. 71-77.
  17. Bond, D. R., Holmes, D. E., Tender, L. M., and Lovley, D. R., 2002, "Electrode-reducing microorganism that harvest energy from marine sediment, Science, Vol. 295, pp. 483-485. https://doi.org/10.1126/science.1066771
  18. Perry, R. H. and Chilton, C. H., 1974, "Chemical Engineers' Handbook, 5th ed.", McGraw-Hill.
  19. Kim, J. G., 2008, "Removal characteristics of organic pollutants in microbial fuel cell", Master Thesis, Keum-O Tech. University.