Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01354

Preparation and Characteristics of Core-Shell Structure with Nano Si/Graphite Nanosheets Hybrid Layers Coated on Spherical Natural Graphite as Anode Material for Lithium-ion Batteries  

Kwon, Hae-Jun (Department of Materials Science & Engineering, Kangwon National University)
Son, Jong-In (Department of Materials Science & Engineering, Kangwon National University)
Lee, Sung-Man (Department of Materials Science & Engineering, Kangwon National University)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.1, 2021 , pp. 74-81 More about this Journal
Abstract
Silicon (Si) is recognized as a promising anode material for high-energy-density lithium-ion batteries. However, under a condition of electrode comparable to commercial graphite anodes with low binder content and a high electrode density, the practical use of Si is limited due to the huge volume change associated with Si-Li alloying/de-alloying. Here, we report a novel core-shell composite, having a reversible capacity of ~ 500 mAh g-1, by forming a shell composed of a mixture of nano-Si, graphite nanosheets and a pitch carbon on a spherical natural graphite particle. The electrochemical measurements are performed using electrodes with 2 wt % styrene butadiene rubber (SBR) and 2 wt.% carboxymethyl cellulose (CMC) binder in an electrode density of ~ 1.6 g cm-3. The core-shell composites having the reversible capacity of 478 mAh g-1 shows the outstanding capacity retention of 99% after 100 cycles with the initial coulombic efficiency of 90%. The heterostructure of core-shell composites appears to be very effective in buffering the volume change of Si during cycling.
Keywords
Core-Shell Composites; Si-Graphite Composite Anode; Electrochemical Performance; Anode Material; Lithium-Ion Battery;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. M. Tarascon, M. Armand, Nature 2001, 414, 359-367.   DOI
2 V. Etacheri, R. Marom, R. Elazari, G. Salita, D. Aurbach, Energy Environ. Sci., 2011, 4(9), 3243-3262.   DOI
3 J. Lu, Z. Chen, F. Pan, Y. Cui, K. Amine, Electrochem. Energy Rev., 2018, 1(1), 35-53.   DOI
4 R. Schmuch, R. Wagner, G. Horpel, T. Placke, M. Winter, Nat. Energy, 2018, 3(4), 267-278.   DOI
5 J. Yang, M. Winter, J. O. Besenhard, Solid State Ionics, 1996, 90(1-4), 281-287.   DOI
6 M. Winter, J. O. Besenhard, M. E. Spahr, P. Novak, Adv. Mater., 1998, 10(10), 725-763.   DOI
7 C. Zhu, K. Han, D. Geng, H. Ye, X. Meng, Electrochim. Acta, 2017, 251, 710-728.   DOI
8 Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Adv. Energy Mater. 2017, 7(23), 1700715   DOI
9 F. Luo, B. Liu, J. Zheng, G. Chu, K. Zhong, H. Li, X. Huang, L. Chen, J. Electrochem. Soc., 2015, 162(14) , A2509.   DOI
10 M. Gu, Y. He, J. Zheng, C. Wang, Nanp Energy, 2015, 17, 366-383.   DOI
11 H. Wu, Y. Cui, Nano Today, 2012, 7(5), 414-429.   DOI
12 D. Doughty, E. P. Roth, Electrochem. Soc. Interface, 2012, 21(2), 37-44.
13 J. Lamb, C. J. Orendorff, J. Power Sources, 2014, 247, 189-196.   DOI
14 J. H. Lee, H. M. Lee, S. Ahn, J. Power Sources, 2003, 119, 833-837.   DOI
15 M. Yoshio, T. Tsumura, N. Dimov, J. Power Sources, 2005, 146(1-2), 10-14.   DOI
16 L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour, M. D. Fleischauer, J. R. Dahn, J. Electrochem. Soc., 2003, 150(11), A1457.   DOI
17 M. Gauthier, D. Mazouzi, D. Reyter, B. Lestriez, P. Moreau, D. Guyomard, L. Roue, Energy Environ. Sci., 2013, 6(7), 2145-2155.   DOI