DOI QR코드

DOI QR Code

Preparation and Characteristics of Core-Shell Structure with Nano Si/Graphite Nanosheets Hybrid Layers Coated on Spherical Natural Graphite as Anode Material for Lithium-ion Batteries

  • Kwon, Hae-Jun (Department of Materials Science & Engineering, Kangwon National University) ;
  • Son, Jong-In (Department of Materials Science & Engineering, Kangwon National University) ;
  • Lee, Sung-Man (Department of Materials Science & Engineering, Kangwon National University)
  • Received : 2020.08.13
  • Accepted : 2020.08.25
  • Published : 2021.02.28

Abstract

Silicon (Si) is recognized as a promising anode material for high-energy-density lithium-ion batteries. However, under a condition of electrode comparable to commercial graphite anodes with low binder content and a high electrode density, the practical use of Si is limited due to the huge volume change associated with Si-Li alloying/de-alloying. Here, we report a novel core-shell composite, having a reversible capacity of ~ 500 mAh g-1, by forming a shell composed of a mixture of nano-Si, graphite nanosheets and a pitch carbon on a spherical natural graphite particle. The electrochemical measurements are performed using electrodes with 2 wt % styrene butadiene rubber (SBR) and 2 wt.% carboxymethyl cellulose (CMC) binder in an electrode density of ~ 1.6 g cm-3. The core-shell composites having the reversible capacity of 478 mAh g-1 shows the outstanding capacity retention of 99% after 100 cycles with the initial coulombic efficiency of 90%. The heterostructure of core-shell composites appears to be very effective in buffering the volume change of Si during cycling.

Keywords

References

  1. J. M. Tarascon, M. Armand, Nature 2001, 414, 359-367. https://doi.org/10.1038/35104644
  2. V. Etacheri, R. Marom, R. Elazari, G. Salita, D. Aurbach, Energy Environ. Sci., 2011, 4(9), 3243-3262. https://doi.org/10.1039/c1ee01598b
  3. J. Lu, Z. Chen, F. Pan, Y. Cui, K. Amine, Electrochem. Energy Rev., 2018, 1(1), 35-53. https://doi.org/10.1007/s41918-018-0001-4
  4. R. Schmuch, R. Wagner, G. Horpel, T. Placke, M. Winter, Nat. Energy, 2018, 3(4), 267-278. https://doi.org/10.1038/s41560-018-0107-2
  5. J. Yang, M. Winter, J. O. Besenhard, Solid State Ionics, 1996, 90(1-4), 281-287. https://doi.org/10.1016/S0167-2738(96)00389-X
  6. M. Winter, J. O. Besenhard, M. E. Spahr, P. Novak, Adv. Mater., 1998, 10(10), 725-763. https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
  7. C. Zhu, K. Han, D. Geng, H. Ye, X. Meng, Electrochim. Acta, 2017, 251, 710-728. https://doi.org/10.1016/j.electacta.2017.09.036
  8. Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Adv. Energy Mater. 2017, 7(23), 1700715 https://doi.org/10.1002/aenm.201700715
  9. F. Luo, B. Liu, J. Zheng, G. Chu, K. Zhong, H. Li, X. Huang, L. Chen, J. Electrochem. Soc., 2015, 162(14) , A2509. https://doi.org/10.1149/2.0131514jes
  10. M. Gu, Y. He, J. Zheng, C. Wang, Nanp Energy, 2015, 17, 366-383. https://doi.org/10.1016/j.nanoen.2015.08.025
  11. H. Wu, Y. Cui, Nano Today, 2012, 7(5), 414-429. https://doi.org/10.1016/j.nantod.2012.08.004
  12. D. Doughty, E. P. Roth, Electrochem. Soc. Interface, 2012, 21(2), 37-44.
  13. J. Lamb, C. J. Orendorff, J. Power Sources, 2014, 247, 189-196. https://doi.org/10.1016/j.jpowsour.2013.08.066
  14. J. H. Lee, H. M. Lee, S. Ahn, J. Power Sources, 2003, 119, 833-837. https://doi.org/10.1016/S0378-7753(03)00281-7
  15. M. Yoshio, T. Tsumura, N. Dimov, J. Power Sources, 2005, 146(1-2), 10-14. https://doi.org/10.1016/j.jpowsour.2005.03.143
  16. L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour, M. D. Fleischauer, J. R. Dahn, J. Electrochem. Soc., 2003, 150(11), A1457. https://doi.org/10.1149/1.1613668
  17. M. Gauthier, D. Mazouzi, D. Reyter, B. Lestriez, P. Moreau, D. Guyomard, L. Roue, Energy Environ. Sci., 2013, 6(7), 2145-2155. https://doi.org/10.1039/c3ee41318g