• 제목/요약/키워드: graphene layer

검색결과 349건 처리시간 0.032초

The effects of temperature and vacancy defect on the severity of the SLGS becoming anisotropic

  • Tahouneh, Vahid;Naei, Mohammad Hasan;Mashhadi, Mahmoud Mosavi
    • Steel and Composite Structures
    • /
    • 제29권5호
    • /
    • pp.647-657
    • /
    • 2018
  • Geometric imperfections may be created during the production process or setting borders of single-layer graphene sheets (SLGSs). Vacancy defects are an instance of geometric imperfection, so investigating the effect of these vacancies on the mechanical properties of single-layer graphene is extremely important. Since very few studies have been conducted on the structure of imperfect graphene (with the vacancy defect) as an anisotropic structure, further study of this defective structure seems imperative. Due to the vacancy defects and for the proper assessment of mechanical properties, the graphene structure should be considered anisotropic in certain states. The present study investigates the effects of site and size of vacancy defects on the mechanical properties of graphene as an anisotropic structure using the lekhnitskii interaction coefficients and Molecular Dynamic approach. The effect of temperature on the severity of the SLGS becoming anisotropic is also investigated in this study. The results reveal that the amount of temperature has a big effect on the severity of the structure getting anisotropic even for a graphene without any defects. The effect of aspect ratio, temperature and also size and site of vacancy defects on the material properties of the graphene are studied in this research work. According to the present study, using material properties of flawless graphene for imperfect structure can lead to inaccurate results.

계면활성제 기반 산화그래핀층이 도입된 전기변색 poly (3-hexyl thiophene) 박막의 장기 수명 특성 (Long term life-time of electrochromic poly (3-hexyl thiophene) films modified by surfactant-assisted graphene oxide layers.)

  • 김태호;최기인;김혜리;오성현;구자승;나윤채
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.147-147
    • /
    • 2016
  • In general, organic electrochromic (EC) materials have been known to be electrochemically unstable during the ionic exchange process. One effective method to realize stable EC materials is incorporating graphene derivatives in the polymer matrix, by using the strong interaction between graphene derivatives and polymer. However, previous studies are limited graphene derivatives. In this study, we developed a polymer-graphene derivative complex with the chemical assistance of a surfactant (octadecylamine, ODA). Surfactant-assisted graphene oxide (GO-ODA) was introduced as a protective layer on the electrochromic poly (3-hexyl thiophene) (P3HT) films by the Langmuir-Schaefer method. The deposition of GO-ODA protective layer with high coverage was confirmed by atomic force microscopy. The strong interactions between GO-ODA and P3HT were examined with UV-Vis spectrophotometry and X-ray photoelectron spectroscopy. Electrochemical and electrochromic investigations revealed that the GO-ODA layer greatly improved the long-term cyclability of the P3HT film. These findings imply that the GO-ODA complex has a significant role in creating stable EC cycling, due to its strong interaction with the P3HT film.

  • PDF

Atomic Force Microscopy Study on Correlation between Electrical Transport and Nanomechanical properties of Graphene Layer

  • Kwon, Sang-Ku;Choi, Sung-Hyun;Chung, H.J.;Seo, S.;Park, Jeong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.85-85
    • /
    • 2010
  • Graphene, the building block of graphite, is one of the most promising materials due to their fascinating electronic transport properties. The pseudo-two-dimensional sp2 bonding in graphene layers yields one of the most effective solid lubricants. In this poster, we present the correlation between electrical and nanomechanical properties of graphene layer grown on Cu/Ni substrate with CVD (Chemical Vapor Deposition) method. The electrical (current and conductance) and nanomechanical (adhesion and friction) properties have been investigated by the combined apparatus of friction force microscopy/conductive probe atomic force microscopy (AFM). The experiment was carried out in a RHK AFM operating in ultrahigh vacuum using cantilevers with a conductive TiN coating. The current was measured as a function of the applied load between the AFM tip and the graphene layer. The contact area has been obtained with the continuum mechanical models. We will discuss the influence of mechanical deformation on the electrical transport mechanism on graphene layers.

  • PDF

Vibration analysis of functionally graded graphene platelet-reinforced composite doubly-curved shallow shells on elastic foundations

  • Sobhy, Mohammed;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.195-208
    • /
    • 2019
  • Based on a four-variable shear deformation shell theory, the free vibration analysis of functionally graded graphene platelet-reinforced composite (FGGPRC) doubly-curved shallow shells with different boundary conditions is investigated in this work. The doubly-curved shells are composed of multi nanocomposite layers that are reinforced with graphene platelets. The graphene platelets are uniformly distributed in each individual layer. While, the volume faction of the graphene is graded from layer to other in accordance with a novel distribution law. Based on the suggested distribution law, four types of FGGPRC doubly-curved shells are studied. The present shells are assumed to be rested on elastic foundations. The material properties of each layer are calculated using a micromechanical model. Four equations of motion are deduced utilizing Hamilton's principle and then converted to an eigenvalue problem employing an analytical method. The obtained results are checked by introducing some comparison examples. A detailed parametric investigation is performed to illustrate the influences of the distribution type of volume fraction, shell curvatures, elastic foundation stiffness and boundary conditions on the vibration of FGGPRC doubly-curved shells.

CVD공정으로 제작된 멀티레이어 그래핀의 압저항 효과를 이용한 직접화된 압력센서 개발 (Development of Integration Pressure Sensor Using Piezoresistive Effect of Chemical Vapor Deposition (CVD) Produced Multilayer Graphene)

  • 임대윤;하태원;이칠형
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.470-474
    • /
    • 2023
  • In this study, a diaphragm-type pressure sensor was developed using multi-layer(four-layer) graphene produced at 1 nm thickness by thermally transferring single-layer graphene produced by chemical vapor deposition (CVD) to a 6" silicon wafer. By measuring the gauge factor, we investigated whether it was possible to produce a pressure sensor of consistent quality. As a result of the measurement, the pressure sensor using multilayer graphene showed linearity and had a gauge factor of about 17.5. The gauge factor of the multilayer graphene-based pressure sensor produced through this study is lower than that of doped silicon, but is more sensitive than a general metal sensor, showing that it can be sufficiently used as a commercialized sensor.

Simultaneous Transfer and Patterning of CVD-Grown Graphene with No Polymeric Residues by Using a Metal Etch Mask

  • 장미;정진혁;;이내응
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.642-642
    • /
    • 2013
  • Graphene, two dimensional single layer of carbon atoms, has tremendous attention due to its superior property such as high electron mobility, high thermal conductivity and optical transparency. Especially, chemical vapor deposition (CVD) grown graphene has been used as a promising material for high quality and large-scale graphene film. Unfortunately, although CVD-grown graphene has strong advantages, application of the CVD-grown graphene is limited due to ineffective transfer process that delivers the graphene onto a desired substrate by using polymer support layer such as PMMA(polymethyl methacrylate). The transferred CVD-grown graphene has serious drawback due to remaining polymeric residues generated during transfer process, which induces the poor physical and electrical characteristics by a p-doping effect and impurity scattering. To solve such issue incurred during polymer transfer process of CVD-grown graphene, various approaches including thermal annealing, chemical cleaning, mechanical cleaning have been tried but were not successful in getting rid of polymeric residues. On the other hand, lithographical patterning of graphene is an essential step in any form of microelectronic processing and most of conventional lithographic techniques employ photoresist for the definition of graphene patterns on substrates. But, application of photoresist is undesirable because of the presence of residual polymers that contaminate the graphene surface consistent with the effects generated during transfer process. Therefore, in order to fully utilize the excellent properties of CVD-grown graphene, new approach of transfer and patterning techniques which can avoid polymeric residue problem needs to be developed. In this work, we carried out transfer and patterning process simultaneously with no polymeric residue by using a metal etch mask. The patterned thin gold layer was deposited on CVD-grown graphene instead of photoresists in order to make much cleaner and smoother surface and then transferred onto a desired substrate with PMMA, which does not directly contact with graphene surface. We compare the surface properties and patterning morphology of graphene by scanning electron microscopy (SEM), atomic force microscopy(AFM) and Raman spectroscopy. Comparison with the effect of residual polymer and metal on performance of graphene FET will be discussed.

  • PDF

역전사법을 활용한 고안정성 그래핀 기반 전계효과 트랜지스터 제작 (Highly Stable Graphene Field-effect Transistors using Inverse Transfer Method)

  • 이은호;방대석
    • 접착 및 계면
    • /
    • 제22권4호
    • /
    • pp.153-157
    • /
    • 2021
  • 이차원 탄소 동소체인 그래핀은 기존 재료보다 우수한 기계적, 전기적 특성을 지니고 있다. 특히, 그래핀의 전하이동도는 실리콘 대비 100배가량 높다고 알려져 차세대 전자소자의 핵심재료로 각광을 받고 있다. 하지만, 그래핀은 외부 환경의 변화에 매우 민감하여 수분 혹은 산소에 취약하여 그래핀 기반 전자소자의 안정성이 취약하다는 단점이 존재하기에 이를 해결하기 위해 다양한 시도가 이뤄지고 있다. 본 연구에서는 그래핀 전계효과 트랜지스터의 절연막을 전사시에 사용되는 고분자 층의 표면 에너지를 조절하여 안정성을 크게 향상시키는 연구를 수행하였다. 절연층으로 쓰인 고분자의 표면 에너지가 낮아짐에 따라 물 분자 혹은 산소와 같은 대기중의 불순물 흡착을 효과적으로 제어함으로써, 안정성을 향상시킬 수 있었다.

그래핀 하부전극을 이용하여 BMNO 케페시터의 특성 향상을 위한 Ti Adhesion Layer의 효과 (Effect of Ti Adhesion Layer on the Electrical Properties of BMNO Capacitor Using Graphene Bottom Electrodes)

  • 박병주;윤순길
    • 한국전기전자재료학회논문지
    • /
    • 제26권12호
    • /
    • pp.867-871
    • /
    • 2013
  • The Ti adhesion layers were deposited onto the glass substrate for transparent capacitors using $Bi_2Mg_{2/3}Nb_{4/3}O_7$ (BMNO) dielectric thin films. Graphene was transferred onto the Ti/glass substrate after growing onto the Ni/$SiO_2$/Si using rapid-thermal pulse CVD (RTPCVD). The BMNO dielectric thin films were investigated for the microstructure, dielectric and leakage properties in the case of capacitors with and without Ti adhesion layers. Leakage current and dielectric properties were strongly dependent on the Ti adhesion layers grown for graphene bottom electrode.

Photoinduced Chemical Linking of Difluoride Molecules with Graphene

  • 양미현;이경재;;임규욱;안종렬
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.198.1-198.1
    • /
    • 2014
  • Many efforts have been devoted on chemical modification of graphene layer to modulate its electrical properties. In the previous report, laser irradiation on the CYTOP(perfluoropolymer) doped graphene layer induces chemical modification of it, resulting in the insulating I-V characteristics. While the results strongly denoted C-F bond formation after irradiation, the detailed process of photo-induced chemical change is not known yet. To probe this, we utilized synchrotron based SPEM (scanning photoelectron emission spectroscopy) in NSRRC, Taiwan. We irradiate the sample by photon of 614 eV in a stepwise manner as a function of time. As photon irradiation increased, difluoride moieties in the CYTOP was broken, and then formed mono-fluoride with carbon atoms consisting graphene layer.

  • PDF

Structural damaging in few -layer graphene due to the low energy electron irradiation

  • Guseinov, Nazim R.;Baigarinova, Gulzhan A.;Ilyin, Arkady M.
    • Advances in nano research
    • /
    • 제4권1호
    • /
    • pp.45-50
    • /
    • 2016
  • Data of Raman spectroscopy from graphene and few-layer graphene (FLG) irradiated by SEM electron beam in the range of energies 0.2 -30 keV are presented. The obvious effect of damaging the nanostructures by all used beam energies for specimens placed on insulator substrates ($SiO_2$) was revealed. At the same time, no signs of structural defects were observed in the cases when FLG have been arranged on metallic substrate. A new physical mechanism of under threshold energy defect production supposing possible formation of intensive electrical charged puddles on insulator substrate surface is suggested.