Browse > Article
http://dx.doi.org/10.17702/jai.2021.22.4.153

Highly Stable Graphene Field-effect Transistors using Inverse Transfer Method  

Lee, Eunho (Department of Chemical Engineering, Kumoh National Institute of Technology)
Bang, Daesuk (Department of Chemical Engineering, Kumoh National Institute of Technology)
Publication Information
Journal of Adhesion and Interface / v.22, no.4, 2021 , pp. 153-157 More about this Journal
Abstract
Graphene, a two-dimensional carbon allotrope, has outstanding mechanical and electrical properties. In particular, the charge carrier mobility of graphene is known to be about 100 times higher than that of silicon, and it has received attention as a core material for next-generation electronic devices. However, graphene is very sensitive to environmental conditions, especially vulnerable to moisture or oxygen. It becomes a disadvantage in that the stability of the graphene-based electronic device, so various attempts are being made to solve this problem. In this work, we report a method to greatly improve the stability by controlling the surface energy of the polymer layer used for transferring the insulating layer of the graphene field-effect transistor. As the surface energy of the polymer used as the insulating layer was lowered, the stability could be improved by effectively controlling the adsorption of impurities in the atmosphere such as water molecules or oxygen.
Keywords
Graphene; Field-effect transistors; Dielectric layer; Polymer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science, 320, 1308 (2008).   DOI
2 Y. -M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. -Y, Chiu, A. Grill, Ph. Avouris, Science, 327, 662 (2010).   DOI
3 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Science, 324, 1312 (2009).   DOI
4 H.H. Kim, S.K. Lee, S.G. Lee, E. Lee, K. Cho, Advanced Functional Materials, 26, 2070 (2016).   DOI
5 E. Lee, H. Lim, N. -S. Lee, H. H. Kim, Sen. & Actuators B. Chem, 347, 130579 (2021).   DOI
6 H.H. Kim, J.W. Yang, S.B. Jo, B. Kang, S.K. Lee, H. Bong, G. Lee, K.S. Kim, K. Cho, ACS Nano, 7, 1155 (2013).   DOI
7 A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U. v. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, A.K. Sood, Nature Nanotechnology, 3, 2105 (2008).
8 E. Lee, S.G. Lee, H.C. Lee, M. Jo, M.S. Yoo, K. Cho, Advanced Materials, 30, 1 (2018).
9 C. Lee, X. Wei, J.W. Kysar, J. Hone, Science, 321, 385 (2008) .   DOI
10 I.V.G. and A.A.F. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, Science, 306, 666 (2004).   DOI
11 E. Lee, S.G. Lee, W.H. Lee, H.C. Lee, N.N. Nguyen, M.S. Yoo, K. Cho, Chemistry of Materials, 32, 4544 (2020).   DOI
12 S. Park, R.S. Ruoff, Nature Nanotechnology, 4, 217 (2009).   DOI
13 K. v. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Rohrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, T. Seyller, Nature Materials, 8, 203 (2008).   DOI
14 J.H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, M. Ishigami, Charged-impurity scattering in graphene, Nature Physics, 4, 377 (2008).   DOI
15 H.H. Kim, Y. Chung, E. Lee, S.K. Lee, K. Cho, Advanced Materials, 26, 3213 (2014).   DOI