Browse > Article
http://dx.doi.org/10.12989/scs.2019.33.2.195

Vibration analysis of functionally graded graphene platelet-reinforced composite doubly-curved shallow shells on elastic foundations  

Sobhy, Mohammed (Department of Mathematics and Statistics, Faculty of Science, King Faisal University)
Zenkour, Ashraf M. (Department of Mathematics, Faculty of Science, King Abdulaziz University)
Publication Information
Steel and Composite Structures / v.33, no.2, 2019 , pp. 195-208 More about this Journal
Abstract
Based on a four-variable shear deformation shell theory, the free vibration analysis of functionally graded graphene platelet-reinforced composite (FGGPRC) doubly-curved shallow shells with different boundary conditions is investigated in this work. The doubly-curved shells are composed of multi nanocomposite layers that are reinforced with graphene platelets. The graphene platelets are uniformly distributed in each individual layer. While, the volume faction of the graphene is graded from layer to other in accordance with a novel distribution law. Based on the suggested distribution law, four types of FGGPRC doubly-curved shells are studied. The present shells are assumed to be rested on elastic foundations. The material properties of each layer are calculated using a micromechanical model. Four equations of motion are deduced utilizing Hamilton's principle and then converted to an eigenvalue problem employing an analytical method. The obtained results are checked by introducing some comparison examples. A detailed parametric investigation is performed to illustrate the influences of the distribution type of volume fraction, shell curvatures, elastic foundation stiffness and boundary conditions on the vibration of FGGPRC doubly-curved shells.
Keywords
doubly-curved nanocomposite shells; functionally graded; graphene platelets; vibration; elastic foundations; four-variable shell theory;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Sobhy, M. and Zenkour, A.M. (2019b), "Wave propagation in magneto-porosity FG bi-layer nanoplates based on a novel quasi-3D refined plate theory", Waves Random Complex Media, 1-21. http://doi.org/10.1080/17455030.2019.1634853.
2 Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070   DOI
3 Tan, D.Y. (1998), "Free vibration analysis of shells of revolution", J. Sound Vib., 213(1), 15-33. https://doi.org/10.1006/jsvi.1997.1406   DOI
4 Thai, H.T. and Vo, T.P. (2013), "A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates", Appl. Math. Model., 37(5), 3269-3281. https://doi.org/10.1016/j.apm.2012.08.008   DOI
5 Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech-A/Solids, 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008   DOI
6 Tornabene, F. (2011a), "2-D GDQ solution for free vibrations of anisotropic doubly-curved shells and panels of revolution", Compos. Struct., 93(7), 1854-1876. https://doi.org/10.1016/j.compstruct.2011.02.006   DOI
7 Tornabene, F. (2011b), "Free vibrations of anisotropic doublycurved shells and panels of revolution with a free-form meridian resting on Winkler-Pasternak elastic foundations", Compos. Struct., 94, 186-206. https://doi.org/10.1016/j.compstruct.2011.07.002   DOI
8 Liew, K.M. and Lim, C.W. (1997), "Vibration of thick doublycurved stress free shallow shells of curvilinear planform", J. Eng. Mech. ASCE, 123, 413-421. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:5(413)   DOI
9 Chorfi, S.M. and Houmat, A. (2010), "Nonlinear free vibration of a functionally graded doubly curved shallow shell of elliptical plan-form", Compos. Struct., 92, 2573-2581. https://doi.org/10.1016/j.compstruct.2010.02.001   DOI
10 Chandrashekhara, K. (1989), "Free vibrations of anisotropic laminated doubly curved shells", Comput. Struct., 33(2), 435-440. https://doi.org/10.1016/0045-7949(89)90015-1   DOI
11 Mochida, Y., Ilanko, S., Duke, M. and Narita, Y. (2012), "Free vibration analysis of doubly curved shallow shells using the superposition-Galerkin method", J. Sound Vib., 331(6), 1413-1425. https://doi.org/10.1016/j.jsv.2011.10.031   DOI
12 Mahdavi, M.H., Jiang, L. and Sun, X. (2012), "Nonlinear free vibration analysis of an embedded double layer graphene sheet in polymer medium", Int. J. Appl. Mech., 4(4), 1250039. https://doi.org/10.1142/S1758825112500391   DOI
13 Matsunaga, H. (2008), "Free vibration and stability of functionally graded shallow shells according to a 2-D higher-order deformation theory", Compos. Struct., 84, 132-146. https://doi.org/10.1016/j.compstruct.2007.07.006   DOI
14 Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852   DOI
15 Monterrubio, L.E. (2009), "Free vibration of shallow shells using the Rayleigh-Ritz method and penalty parameters", Arch. Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci., 223(10), 2263-2272. https://doi.org/10.1243/09544062JMES1442   DOI
16 Najafi, F., Shojaeefard, M.H. and Googarchin, H.S. (2017), "Lowvelocity impact response of functionally graded doubly curved panels with Winkler-Pasternak elastic foundation: An analytical approach", Compos. Struct., 162, 351-364. https://doi.org/10.1016/j.compstruct.2016.11.094   DOI
17 Nasihatgozar, M., Khalili, S.M.R. and Fard, K.M. (2017), "General equations for free vibrations of thick doubly curved sandwich panels with compressible and incompressible core using higher order shear deformation theory", Steel Compos. Struct., Int. J., 24(2), 151-176. https://doi.org/10.12989/scs.2017.24.2.151
18 Voloshina, E.N. and Dedkov, Y.S. (2014), "General approach to understanding the electronic structure of graphene on metals", Mater. Res. Express, 1(3), 035603. https://doi.org/10.1088/2053-1591/1/3/035603   DOI
19 Tornabene, F., Fantuzzi, N., Viola, E. and Ferreira, A.J.M. (2013), "Radial basis function method applied to doubly-curved laminated composite shells and panels with a general higherorder equivalent single layer formulation", Compos. Part B, 55(1), 642-659. https://doi.org/10.1016/j.compositesb.2013.07.026   DOI
20 Vlasov, V.Z. and Leontev, N.N. (1966), "Beams, plates and shells on elastic foundations", Israel Program for Scientific Translation, Jeruselam. [Translated from Russian]
21 Wu, H., Kitipornchai, S. and Yang, J. (2017a), "Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates", Mater. Des., 132, 430-441. https://doi.org/10.1016/j.matdes.2017.07.025   DOI
22 Wu, H., Yang, J. and Kitipornchai, S. (2017b), "Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment", Compos. Struct., 162, 244-254. https://doi.org/10.1016/j.compstruct.2016.12.001   DOI
23 Duc, N.D., Seung-Eock, K., Cong, P.H., Anh, N.T. and Khoa, N.D. (2017), "Dynamic response and vibration of composite double curved shallow shells with negative Poisson's ratio in auxetic honeycombs core layer on elastic foundations subjected to blast and damping loads", Int. J. Mech. Sci., 133, 504-512. https://doi.org/10.1016/j.ijmecsci.2017.09.009   DOI
24 Yang, J., Wu, H. and Kitipornchai, S. (2017a), "Buckling and postbuckling of functionally graded multilayer graphene plateletreinforced composite beams", Compos. Struct., 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048   DOI
25 Yang, B., Kitipornchai, S., Yang, Y.F. and Yang, J. (2017b), "3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates", Appl. Math. Model., 49, 69-86. https://doi.org/10.1016/j.apm.2017.04.044   DOI
26 Yavari, F., Rafiee, M., Rafiee, J., Yu, Z.-Z. and Koratkar, N. (2010), "Dramatic increase in fatigue life in hierarchical graphene composites", ACS Appl. Mater Interfaces, 2(10), 2738-2743. https://doi.org/10.1021/am100728r   DOI
27 De Villoria, R.G. and Miravete, A. (2007), "Mechanical model to evaluate the effect of the dispersion in nanocomposites", Acta Mater, 55(9), 3025-3031. https://doi.org/10.1016/j.actamat.2007.01.007   DOI
28 Duc, N.D. (2013), "Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation", Compos. Struct., 99, 88-96. https://doi.org/10.1016/j.compstruct.2012.11.017   DOI
29 Fadaee, M., Ilkhani, M.R. and Hosseini-Hashemi, S. (2016), "A new generic exact solution for free vibration of functionally graded moderately thick doubly curved shallow shell panel", J. Vib. Control, 22(15), 3355-3367. https://doi.org/10.1177/1077546314551778   DOI
30 Fang, M., Wang, K., Lu, H., Yang, Y. and Nutt, S. (2009), "Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites", J. Mater. Chem., 19(38), 7098-7105. https://doi.org/10.1039/B908220D   DOI
31 Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs)", Eng. Struct., 140, 110-119. https://doi.org/10.1016/j.engstruct.2017.02.052   DOI
32 Ghavanloo, E. and Fazelzadeh, S.A. (2013), "Free vibration analysis of orthotropic doubly-curved shallow shells based on the gradient elasticity", Compos. Part B, 45, 1448-1457. https://doi.org/10.1016/j.compositesb.2012.09.054   DOI
33 Halpin, J.C. and Kardos, J.L. (1976), "The Halpin-Tsai equations: a review", Polymer Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512   DOI
34 Pasternak, P.L. (1954), "On a new method of analysis of an elastic foundation by means of two foundation constants", Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture, Moscow, 1-56. [In Russian]
35 Ni, Z., Bu, H., Zou, M., Yi, H., Bi, K. and Chen, Y. (2010), "Anisotropic mechanical properties of graphene sheets from molecular dynamics", Physica B, 405(5), 1301-1306. https://doi.org/10.1016/j.physb.2009.11.071   DOI
36 Qatu, M.S. and Asadi, E. (2012), "Vibration of doubly curved shallow shells with arbitrary boundaries", Appl. Acoust., 73, 21-27. https://doi.org/10.1016/j.apacoust.2011.06.013   DOI
37 Qatu, M.S. and Leissa, A.W. (1991), "Natural frequencies for cantilevered doubly-curved laminated composite shallow shells", Compos. Struct., 17, 227-255. https://doi.org/10.1016/0263-8223(91)90053-2   DOI
38 Pathak, A.K., Borah, M., Gupta, A., Yokozeki, T. and Dhakate, S.R. (2016), "Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites", Compos. Sci. Technol., 135, 28-38. https://doi.org/10.1016/j.compscitech.2016.09.007   DOI
39 Pouresmaeeli, S. and Fazelzadeh, S.A. (2016), "Frequency analysis of doubly curved functionally graded carbon nanotubereinforced composite panels", Acta Mech., 227, 2765-2794. https://doi.org/10.1007/s00707-016-1647-9   DOI
40 Pradyumna, S. and Bandyopadhyay, J.N. (2008), "Free vibration analysis of functionally graded curved panels using a higherorder finite element formulation", J. Sound Vib., 318(1-2), 176-192. https://doi.org/10.1016/j.jsv.2008.03.056   DOI
41 Abazid, M.A., Alotebi, M.S. and Sobhy, M. (2018), "A novel shear and normal deformation theory for hygrothermal bending response of FGM sandwich plates on Pasternak elastic foundation", Struct. Eng. Mech., Int. J., 67(3), 219-232. https://doi.org/10.12989/sem.2018.67.3.219
42 Rafiee, M.A., Rafiee, J., Yu, Z.Z. and Koratkar, N. (2009), "Buckling resistant graphene nanocomposites", Appl. Phys. Lett., 95, 223103. https://doi.org/10.1063/1.3269637   DOI
43 Reddy, J.N. and Liu, C.F. (1976), "A higher-order shear deformation theory of laminated elastic shells", Int. J. Eng. Sci., 23(3), 319-330. https://doi.org/10.1016/0020-7225(85)90051-5   DOI
44 Zenkour, A.M. and Sobhy, M. (2018), "Nonlocal piezohygrothermal analysis for vibration characteristics of a piezoelectric Kelvin-Voigt viscoelastic nanoplate embedded in a viscoelastic medium", Acta Mech., 229(1), 3-19. https://doi.org/10.1007/s00707-017-1920-6   DOI
45 Zenkour, A.M., Allam, M.N.M. and Sobhy, M. (2010a), "Bending analysis of FG viscoelastic sandwich beams with elastic cores resting on Pasternak's elastic foundations", Acta Mech., 212(3-4), 233-252. https://doi.org/10.1007/s00707-009-0252-6   DOI
46 Zenkour, A.M., Allam, M.N.M. and Sobhy, M. (2010b), "Effect of transverse normal and shear deformation on a fiber-reinforced viscoelastic beam resting on two-parameter elastic foundations", Int. J. Appl. Mech., 2(1), 87-115. https://doi.org/10.1142/S1758825110000482   DOI
47 Zhao, X., Zhang, Q., Chen, D. and Lu, P. (2010), "Enhanced mechanical properties of graphenebased poly(vinyl alcohol) composites", Macromolecules, 43(5), 2357-2363. https://doi.org/10.1021/ma902862u   DOI
48 Hause, T. and Librescu, L. (2007), "Doubly curved anisotropic sandwich panels: Modeling and free vibration", J. Aircr., 44(4), 1327-1336. https://doi.org/10.2514/1.26990   DOI
49 Hosseini, S.M. and Zhang, C. (2018), "Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model", Steel Compos. Struct., Int. J., 27(3), 255-271. https://doi.org/10.2514/1.26990
50 Jiang, S., Yang, T., Li, W.L. and Du, J. (2013), "Vibration analysis of doubly curved shallow shells with elastic edge restraints", J. Vib. Acoust., 135(3), 034502. https://doi.org/10.1115/1.4023146   DOI
51 Bich, D.H., Duc, N.D. and Quan, T.Q. (2014), "Nonlinear vibration of imperfect eccentrically stiffened functionally graded double curved shallow shells resting on elastic foundation using the first order shear deformation theory", Int. J. Mech. Sci., 80, 16-28. https://doi.org/10.1016/j.ijmecsci.2013.12.009   DOI
52 Arefi, M. (2018), "Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell", Steel Compos. Struct., Int. J., 27(4), 479-493. https://doi.org/10.12989/scs.2018.27.4.479
53 Benachour, A., Tahar, H.D., Atmane, H.A., Tounsi, A. and Ahmed, M.S. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos. Part B: Eng., 42(6), 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032   DOI
54 Bhimaraddi, A. (1991), "Free vibration analysis of doubly curved shallow shells on rectangular planform using three-dimensional elasticity theory", Int. J. Solids Struct., 27, 897-913. https://doi.org/10.1016/0020-7683(91)90023-9   DOI
55 Shahsavari, D., Karami, B. and Li, L. (2018b), "A high-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Struct., Int. J., 29(1), 53-66. https://doi.org/10.12989/scs.2018.29.1.053
56 Rezaiee, P.M., Masoodi, A. and Arabi, E. (2018), "Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element", Steel Compos. Struct., Int. J., 28(3), 389-401. https://doi.org/10.12989/scs.2018.28.3.389
57 Sahmani, S. and Aghdam, M.M. (2017), "Nonlinear instability of axially loaded functionally graded multilayer graphene plateletreinforced nanoshells based on nonlocal strain gradient elasticity theory", Int. J. Mech. Sci., 131, 95-106. https://doi.org/10.1016/j.ijmecsci.2017.06.052   DOI
58 Shahsavari, D., Karami, B., Fahham, H.R. and Li, L. (2018a), "On the shear buckling of porous nanoplates using a new sizedependent quasi-3D shear deformation theory", Acta Mechanica, 229(11), 4549-4573. https://doi.org/10.1007/s00707-018-2247-7   DOI
59 Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018c), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004   DOI
60 Shen, H.S., Xiang, Y., Lin, F. and Hui, D. (2017), "Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments", Compos. Part B, 119, 67-78. https://doi.org/10.1016/j.compositesb.2017.03.020   DOI
61 Shimpi, R.P. (2002), "Refined plate theory and its variants", AIAA J., 40, 137-146. https://doi.org/10.2514/2.1622   DOI
62 Singh, A.V. (1999), "Free vibration analysis of deep doubly curved sandwich panels", Comput. Struct., 73(1-5), 385-394. https://doi.org/10.1016/S0045-7949(98)00267-3   DOI
63 Sobhy, M. (2019), "Levy solution for bending response of FG carbon nanotube reinforced plates under uniform, linear, sinusoidal and exponential distributed loadings", Eng. Struct., 182, 198-212. https://doi.org/10.1016/j.engstruct.2018.12.071   DOI
64 Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018   DOI
65 Sobhy, M. (2014a), "Generalized two-variable plate theory for multi-layered graphene sheets with arbitrary boundary conditions", Acta Mech., 225, 2521-2538. https://doi.org/10.1007/s00707-014-1093-5   DOI
66 Bourada, M., Tounsi, A., Houari, M.S.A. and Bedia, E.A.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/1099636211426386   DOI
67 Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018a), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., Int. J., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099
68 Sobhy, M. (2014b), "Natural frequency and buckling of orthotropic nanoplates resting on two-parameter elastic foundations with various boundary conditions", J. Mech., 30, 443-453. https://doi.org/10.1017/jmech.2014.46   DOI
69 Sobhy, M. (2016), "An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment", Int. J. Mech. Sci., 110, 62-77. https://doi.org/10.1016/j.ijmecsci.2016.03.003   DOI
70 Sobhy, M. (2018), "Magneto-electro-thermal bending of FGgraphene reinforced polymer doubly-curved shallow shells with piezoelectromagnetic faces", Compos. Struct., 203, 844-860. https://doi.org/10.1016/j.compstruct.2018.07.056   DOI
71 Sobhy, M. and Abazid, M.A. (2019), "Dynamic and instability analyses of FG graphene-reinforced sandwich deep curved nanobeams with viscoelastic core under magnetic field effect", Compos. Part B: Eng., 174, 106966. https://doi.org/10.1016/j.compositesb.2019.106966   DOI
72 Sobhy, M. and Zenkour, A.M. (2018), "Thermal buckling of double-layered graphene system in humid environment", Mater. Res. Express, 5(1), 015028. https://doi.org/10.1088/2053-1591/aaa2ba   DOI
73 Kiani, Y., Akbarzadeh, A.H., Chen, Z.T. and Eslami, M.R. (2012), "Static and dynamic analysis of an FGM doubly curved panel resting on the Pasternak-type elastic foundation", Compos. Struct., 94(8), 2474-2484. https://doi.org/10.1016/j.compstruct.2012.02.028   DOI
74 Karami, B., Shahsavari, D. and Janghorban, M. (2018b), "A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol., 82, 499-512. https://doi.org/10.1016/j.ast.2018.10.001   DOI
75 Karami, B., Shahsavari, D. and Janghorban, M. (2018c), "Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mater. Struct., 25(12), 1047-1057. https://doi.org/10.1080/15376494.2017.1323143   DOI
76 Karami, B., Shahsavari, D., Janghorban, M., Dimitri, R. and Tornabene, F. (2019), "Wave propagation of porous nanoshells", Nanomaterials, 9(1), 22. https://doi.org/10.3390/nano9010022   DOI
77 Li, L., Li, H., Pang, F., Wang, X., Du, Y. and Li, S. (2017), "The modified Fourier-Ritz approach for the free vibration of functionally graded cylindrical, conical, spherical panels and shells of revolution with general boundary condition", Math. Probl. Eng. https://doi.org/10.1155/2017/9183924.
78 Liew, K.M. and Lim, C.W. (1996), "Vibration of doubly-curved shallow shells", Acta. Mech., 114(1), 95-119. https://doi.org/10.1007/BF01170398   DOI
79 Sobhy, M. and Zenkour, A.M. (2019a), "A comprehensive study on the size-dependent hygrothermal analysis of exponentially graded microplates on elastic foundations", Mech. Adv. Mater. Struct., 1-15. https://doi.org/10.1080/15376494.2018.1499986