Browse > Article
http://dx.doi.org/10.12989/anr.2016.4.1.045

Structural damaging in few -layer graphene due to the low energy electron irradiation  

Guseinov, Nazim R. (Open access National Nanolab, Kazakh National University)
Baigarinova, Gulzhan A. (Open access National Nanolab, Kazakh National University)
Ilyin, Arkady M. (Open access National Nanolab, Kazakh National University)
Publication Information
Advances in nano research / v.4, no.1, 2016 , pp. 45-50 More about this Journal
Abstract
Data of Raman spectroscopy from graphene and few-layer graphene (FLG) irradiated by SEM electron beam in the range of energies 0.2 -30 keV are presented. The obvious effect of damaging the nanostructures by all used beam energies for specimens placed on insulator substrates ($SiO_2$) was revealed. At the same time, no signs of structural defects were observed in the cases when FLG have been arranged on metallic substrate. A new physical mechanism of under threshold energy defect production supposing possible formation of intensive electrical charged puddles on insulator substrate surface is suggested.
Keywords
few-layer graphene; radiation effects; electric charged puddles;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chen, Z., Lin, Y., Rooks, M.J. and Avouris, P. (2007), "Graphene nano-ribbons electronics", Physica E, 40(2), 228-232.   DOI
2 Das, B., Prasad, K., Ramaturu, U. and Rao, C.N. (2009), "Composites, reinforced by few-layer graphene", Nanotechnology, 20, 125705-708.   DOI
3 Delley, B. (1990), "An all-electron numerical method for solving the local density functional", J. Chem. Phys., 92, 508-517.   DOI
4 Eckman, A., Felten, A., Mishchenko, A., Brittnell, L., Krupke, R., Novoselov, K.S. and Casiraghi, C. (2012), "Probing the nature of defects in graphene by Raman spectroscopy", Nano. Lett., 12, 3925-3930.   DOI
5 Fei, M., Chao, Z., Wen, Z.Y. and Feng-Shou, Z. (2012), "Collision energy dependence of defect formation in graphene", Chin. Phys. Lett., 29, 076101-4.   DOI
6 Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, V. and Geim, A.K. (2006), "Raman spectrum of graphene and graphene layers", Phys. Rev. Lett., 97, 187401-4.   DOI
7 Ilyin, A.M., Guseinov, N.R., Tsyganov, I.A. and Nemkaeva, R.R. (2011), "Computer simulation and experimental study of graphane-like structures formed by electrolytic hydrogenation", Physica E, 43, 1262-1265.   DOI
8 Ilyin, A.M., Guseinov, N.R., Nemkaeva, R.R., Asanova, S.B. and Kudryashov, V.V. (2013), "Bridge-like radiation defects in few-layer graphene", Nucl. Instrum. Meth. Phys. Res. B, 315, 192-196.   DOI
9 Ilyin, A.M., Daineko, E.A. and Beall, G.W. (2009), "Сomputer simulation and study of radiation defects in graphene", Physica E: Low Dimens. Syst. Nanostr., 42, 67-69.   DOI
10 Ilyin, A.M. and Beall, G.W. (2010) "Simulation and study of bridge-like radiation defects in the carbon nanostructures", J. Comp. Theor. Nanosci., 7, 2004-2007.   DOI
11 Ilyin, A.M. and Golovanov, V.N. (1996), "Auger spectroscopy study of the stress enhanced impurity segregation in a Cr-Mo-V steel", J. Nucl. Mater., 233, 233-235.
12 Zhao, K., Pharr, M., Cai, S., Vlassak, J.J. and Suo, Z. (2011), "Large plastic deformation in high-capacity lithium ion batteries caused by charge and discharge", J. Am. Ceram. Soc., 94, 226-235.   DOI
13 Teweldebrhan, D. and Balandin, A.A. (2009), "Modification of graphene properties due to electron-beam irradiation", Appl. Phys. Lett., 95, 246102.   DOI
14 Wang, G., Shen, X., Yao, J. and Park, J. (2009), "Graphene nanosheets for enhanced lithium storage in lithium ion batteries", Carbon, 47, 2049-53.   DOI